

annual report 2020

TARLOK SINGH SAHOTA BLAINE TOMECK DILLON B. MULDOON

Dr. Sahota (L); Allan Mol and Martin Schep (R)

Dr. Andrew Dean, Melissa Burton and Karen Davies (L); Parneet Kaur, Martin Schep, Dr. Sahota and Allan Mol (R)

Trevor Pennings, Bill Meyer and Dr. Sahota (L); Victoria Desmoulin and Team from Mobert First Nations 400 km from Thunder Bay at LUARS! (R)

Preface

Lakehead University Agricultural Research Station, 2020

The Office of the Vice-President, Research and Innovation is pleased to present the 2020 Annual Report of the Lakehead University Agricultural Research Station (LUARS).

This year is our third year of operations at LUARS. Funding for operations and research programs are provided through a special grant from OMAFRA. In this report, you will see numerous examples of applied research and extension services offered through the station. Most of this research deals with the introduction of new crops/varieties and methods for increasing yields, especially for grain and forage crops. This is extremely important for this region as farmers are continually looking for innovative ways to increase feedstock quality and quantity for cattle. The station has also been involved in the introduction of new cash crops in the region.

Although protocols at LUARS have adapted due to COVID-19, operations remain active, and research and outreach have continued to progress. We currently have nine projects, valued at \$245,277, funded through the LUARS Agricultural Research Capacity Development Program to investigate a diverse selection of research projects that actively use the station and the expertise of the scientific director. You will be able to read about some of the progress made on these projects in this report. We will be awarding the third round of funding soon. The current and future research activities at LUARS will further develop and diversify the agricultural sector in the Thunder Bay district and Northwestern Ontario.

The station is a vibrant research centre for Lakehead University, and we are committed to ensuring that the research is applicable to local farming needs while also advancing the area of agricultural research at national and international levels.

Vice-President, Research and Innovation:

Andrew P. Dean, Ph.D. Lakehead University Thunder Bay, ON P7B 5E1 Phone: 807-343-8201; Fax: 807-766-7105 Email: vpresearch@lakeheadu.ca

Director, Lakehead University Agricultural Research Station:

Tarlok Singh Sahota, Ph.D. CCA Lakehead University Thunder Bay, ON P7B 5E1 Phone: 807-707-1987; Fax: 807-343-8116 Email: tssahota@lakeheadu.ca Website: www.lakeheadu.ca/centre/luars

Our Collaborators

Gerry Heinrichs/Riley Verhelst	_
James Richardson International Limited	
N Water Street	RICHARDSON
Thunder Bay ON P7A 8C2	
Tel: 807 343 5571	Sector Se
Email: Riley.verhelst@richardson.ca	
GFO – Josh Cowan	FAR
Manager Research and Innovation	
679 Southgate Drive, Guelph ON	
N1G 4S2	
Tel: 519 767-4138	0
Fax: 519 767-9713	ONTAR
Email: joshcowan@gfo.ca	
Ken Jackle	
Technician	Agriculture and Bioresources
University of Saskatchewan	Agriculture and bioresources
University Services Building	
110 Maintenance Road	
Saskatoon SK S7N 5C5	
Tel: 306 966-5878	
E-mail: ken.jackle@usask.ca	
Kendall Williams	LIGHT BUTCTION OF THE
Executive Director	NORTHWESTERN ONTARIO
NWO Innovation Centre	(())NNOVATION
2400 Nipigon Road	CENTRE
Thunder Bay, ON P7C 4W1	LENTING
Email: kendall@nwoinnovation.ca	
Tel: 807 768 6682	
NOFIA – Cameron Ford	STATISTICS STATISTICS
90 Whitewood Ave. PO Box 2976	NOFIA
New Liskeard ON P0J 1P0	NOPIA
Tel: 705 647 4782	
Fax: 705 647 4783	Constant State
Email: cameron.nofia@gmail.com	
RAIN - David Thompson	
Rural Agri-Innovation Network	
c/o Sault Ste. Marie Innovation	
Centre	
99 Foster Drive, Level Six	RURAL AGRI-INNOVATION NETWORK
Sault Ste. Marie ON	WORL MON-INNUMATION REPTYORK
P6A 5X6	
Tel: 705 942 7927 Ext. 3027	
Email: dthompson@ssmic.com	
Eman. uulompson@ssinic.com	

Our Collaborators

Rich Joy	
Director of Malting and Technical Services	
Canada Malting Company	Canada
3316 Bonnybrook Rd.	Malting
SE, Calgary, Alberta,	Maining
T2G 4M9	A GrainCorp business
Tel: 403 571 7000	
Email: rich.joy@canadamalting.com	
Rigas E Karamanos	
Senior Agronomist	
Koch Fertilizer Canada, ULC	KOCH.
61 Sunhaven Close SE	
Calgary, AB T2X 2X5	FERTILIZER
Tel: 587 955 9395	
Email: Rigas.Karamanos@kochind.com	
Ryan Brophy	
In-charge Eastern Ontario	
Timac Agro Canada/V6 Agronomy Inc.	
9236 Branch Rd. RR#2	(L) Timac Agro
North Augusta, ON K0G 1R0	Canada
Tel: 613 802 2559	
Email: ryan.brophy@ca.timacagro.com	
Steph Kowalski CCA-ON	
Agronomy Lead, Crop Production –	
Ontario and Atlantic, Sollio Agriculture	🚳 Sollio
17554 Plover Mills Road, Thorndale,	Agriculture
ON NOM 2P0	
Tel: 519-878-0067	
Email: Steph.Kowalski@sollio.ag	
Thunder Bay Co-op Farm Supplies -	
Darren Fisk, Manager	
RR #3, 560 Boundary Drive	
Thunder Bay ON P7C 4V2	CO-OPERATIVE
Tel: 807 475 5190	THEN SCHPLUS
Email: tbcoop@tbaytel.net	

Table of Contents

		Item	Page Number
			1 (umber
1		Weather Data	1
2	1	Summary of Research Results	3
3		Screening of Crop Varieties	
	3.1	Spring Cereals	
	3.1.1	Spring Wheat Varieties	15
	3.1.2	Spring Barley Varieties	21
	3.1.3	Malting Barley Varieties	24
	3.1.4	Oat Varieties	29
	3.2	Winter Cereals	
	3.2.1	Winter Wheat Varieties	32
	3.2.2	Late Seeded Winter Wheat Varieties	36
	3.3	Grain Legumes	
	3.3.1	Soybean Varieties	37
	3.3.2	Edible Bean Varieties	39
	3.3.3	Field Pea Varieties	41
	3.3.4	Lentil Varieties	42
	3.4	Oilseeds	
	3.4.1	Linseed Flax Co-op Trial (Varieties/Biotypes)	44
	3.4.2	Liberty Canola Varieties	46
	3.4.3	Roundup Ready/Clearfield Canola Varieties	48
	3.4.4	Winter Canola Varieties	49
	3.4.5	Mustard Varieties	50
	3.5	Forages	
	3.5.1	Comparative Performance of Alfalfa and Galega	51
	3.5.2	Optimizing Seeding Rate in Kernza and Comparing its Forage Production Potrntial	57
		with Perennial Rye and in Mixture with Alfalfa	
	3.5.3	Comparative Performance of Kernza, Perennial Rye, Roundup Ready Alfalfa,	61
		Conventional Alfalfa, Sainfoin, and Chicory	
4		Fertilizer Management Practices	
	4.1	Cereals	
	4.1.1	Nitrogen and Sulphur Management for Malting Barley Production	67
	4.1.2	Evaluation of Fish Waste as a Source of N for Spring Wheat Production	75
	4.1.3	Winter Wheat Survival	81
	4.1.4	Population and NPK Fertilizer Regimes for Winter Rye Grain Production	87
	4.1.5	Residual Effect of Winter Rye Cover Crop - Different Seeding and NPK	93

Fertilizer Rates on Canola

Cont'd to next page....

Table of Contents

		Item	Page Number
	4.2	Grain Legumes	
	4.2.1	Evaluation of NK21 as a source of N and K for Soybean Production	97
	4.2.2	Nitrogen and Sulphur Management for Lentil Production	103
	4.2.3	Phosphorus and Potassium Management for Lentil Production	107
	4.3	Oilseeds	
	4.3.1	Response of Canola to High Rates of N Application from Different Sources	111
	4.3.2	Effect of Apex, Top Phos, EXCELIS MAXX and Bio-Stimulants on Canola	117
	4.3.3	Evaluation of Gypsum and Ammonium Sulphate as Sources of Sulphur for Barley, Canola and Pea Production - Residual Effect on Wheat	120
	4.4	Forages	
	4.4.1	Comparative Performance of Gypsum and Lime for Galega Production	125
	4.4.2	Maximizing Yield and Quality of Galega	129
5		Other Agronomic Practices	
	5.1	Effect of Fungicides on Diseases and Yeild in Spring Cereals	132
	5.2	Winter Rye Date of Seeding	138
	5.3	Winter Rye Date and Rate of Seeding	140
	5.4	Effect of Winter Rye Cover Cropping on Spring Crops	142
	5.5	Optimizing Seeding Rate in Kernza and Comparing its Grain Production Potential with Perennial Rye	144
	5.6	Alternate Forage Legumes	146
	5.7	Galega Establishment	148
6		Abstracts of Research Papers	151
7		Extension and Outreach	158
8		Contact Information of Seed Companies	167
9		Acknowledgements by the Research Team	175
10		Abbreviations used in the Annual Report	176

1. Weather Data

1. Weather Data

1.1 WEATHER - 2020										
Precipitation										
Month	(mm)	Max Temp (°C)	Min Temp (°C)	GDD	CHU					
April	9.9	23.3	-10.7	0	0					
May	36.6	26.0	-7.3	161	247					
June	48.8	31.0	-1.5	297	470					
July	53.8	34.0	6.0	419	644					
August	103.7	29.0	1.0	340	474					
September	41.8	25.5	-4.4	177	283					
October	49.6	19.4	-13.5	33	45					
Total/Mean	344.2	26.9	-4.3	1427	2163					

The start date for CHU was May 1, 2020 and end date was October 14, 2020. Precipitation up to September end was 295 mm.

1.2 WEATHER - 2019									
	Precipitation								
Month	(mm)	Max Temp (°C)	Min Temp (°C)	GDD	CHU				
April	26.6	20.2	-12.8	0	0				
May	59.0	22.7	-7.5	80	114				
June	74.9	27.1	-1.6	220	352				
July	70.0	29.0	4.0	400	632				
August	57.0	29.5	-0.2	290	485				
September	93.0	25.1	-5.0	189	296				
October	101.6	18.0	-7.0	33	40				
Total/Mean	482.1	24.5	-4.3	1213	1918				

The start date for CHU was May 1, 2019 and end date was September 28, 2019.

Precipitation up to September end was 381 mm.

1.3 WEATHER - 2018										
Precipitation										
Month	(mm)	Max Temp (°C)	Min Temp (°C)	GDD	CHU					
April	4.2	21.2	-16.0	0	0					
May	40.8	28.0	-8.0	159	326					
June	37.8	31.0	-4.0	245	411					
July	101.6	30.0	4.0	367	599					
August	48.6	29.0	2.0	302	496					
September	71.0	24.5	-4.0	166	290					
October	88.6	20.3	-7.4	0	0					
Total/Mean	392.6	26.3	-4.8	1238	2123					

The start date for CHU was May 1, 2018 and end date was September 22, 2018.

Precipitation up to September end was 304 mm.

1. Weather Data...Cont'd from previous page

1.4 Weather - 2016-2020											
	202	20	20	19	20	2018		2017		16	
Month	Rain (mm)	CHU									
April	9.9	0	26.6	0	4.2	0	44.0	0	11.4	0	
May	36.6	247	59.0	114	40.8	326	95.0	141	46.2	297	
June	48.8	470	74.9	352	37.8	411	76.4	359	209.1	364	
July	53.8	644	70.0	632	101.6	599	84.8	555	63.8	571	
August	103.7	474	57.0	485	48.6	496	50.6	481	85.2	614	
September	41.8	283	93.0	296	71.0	290	101.8	320	75.0	393	
October	49.6	44	101.6	40	88.6	0	82.0	50	45.2	65	
Total	344.2	2162	482.1	1918	392.6	2123	534.6	1906	535.9	2304	

Start dates for CHU 2020 - 2016: May 1 during all the years.

End dates for CHU 2020 - 2016: October 14, September 28, September 22, October 6, and October 8, respectively.

2. Summary of Research Results

2. Summary of Research Results 2020

Our summer was extremely hot and dry with day temperatures touching 31° C in June and 34° C in July with a rainfall of only 102.6 mm during the two months. As a result, yields of most crops were poor; except edible beans and soybeans, which did exceptionally well. Summer heat and sufficient rain in August (103.7 mm) helped the beans to grow and yield very well (average yield ~5 MT/ha – highest ever!).

2.1 Screening of crop varieties:

2.1.1 Spring Cereals:

Wheat Varieties:

- Thirty-three varieties were evaluated; 21 of which were CWRS (mostly new).
- Grain yield with a trial mean of 2.83 MT/ha was extremely low this year (very hot and dry summer!).
- Highest grain yield (4.46 MT/ha) was obtained with *Easton*. The next best two varieties in grain yield were *AAC Starbuck* (3.63 MT/ha) and *AAC Russell VB* (3.59 MT/ha).
- AAC Prevail and CDC Credence had the highest straw yield (7.07 and 7.04 MT/ha) and CDC Credence the highest biomass yield (10.13 MT/ha).
- Averaged over 2019 and 2020, three varieties that topped in the grain yield were *Easton* (5.18 MT/ha), *AAC Wheatland* (4.78 MT/ha) and *AAC Starbuck* (4.68 MT/ha). Grain yield from *Prosper* was 4.40 MT/ha.
- Grain protein content in AAC Wheatland last year was17.8 % as compared to 16.6 %, in Prosper.
- Since *Easton* is not considered HRW by the Grain Elevators, *AAC Wheatland* and *AAC Starbuck* (both CWRS) can be recommended for cultivation on farms in 2021!

Barley Varieties:

- Fourteen high yielding barley varieties (4 two row and 10 six row) were compared for their production potential.
- *Synasolis* (5.16 MT/ha) among 6 row and *TR1867* (5.00 MT/ha) among 2 row barley produced the highest grain yields. *Chambly* (4.89 MT/ha) was the third best grain yielding variety.
- Straw yield was highest with *AB Advantage* (6.80 MT/ha), *AAC Bell* (2 row; 6.47 MT/ha) and *Amberly* (6.32 MT/ha).
- *AB Advantage* (11.1 MT/ha), *Chambly* (11.0 MT/ha) and *TR1867* (10.7 MT/ha) recorded the highest biomass yields.
- Averaged over 2019 and 2020, grain yields were in the order of *Synasolis* (6.40 MT/ha) ≥ *Boroe* (6.05 MT/ha) ≥ *Chambly* (5.98 MT/ha). However, only 7 varieties were common in 2019 and 2020.

Malting Barley Varieties:

- Thirteen varieties were evaluated. *AB Brewnet* and *CDC Churchill* were the new varieties added this year.
- Three top grain yielding varieties were *Lowe* (6.54 MT/ha), *AB Brewnet* (6.31 MT/ha) and *CDC Fraser* (5.96). *CDC Bow* that has been producing the highest grain yield in the past lagged behind in grain yield last year and this year too (5.53 MT/ha). It seems that *CDC Bow* didn't like the heat in June-July this year. *OAC 21* had the lowest grain yield (4.03 MT/ha). *AB Brewnet* recorded the highest straw yield (5.89 MT/ha), followed by *CDC Copeland* (5.74 MT/ha) and *Lowe* (5.33 MT/ha).
- Grain yield of other varieties ranged from 4.35 MT/ha (*CDC Kindersley*) to 5.86 MT/ha in AAC *Synergy*.
- Averaged over 2017-'20 (*AB Brewnet* and *CDC Churchill* that had only one year data were excluded), *CDC Bow* produced the highest grain (6.29 MT/ha), straw (8.31 MT/ha) and biomass (14.6 MT/ha) yields. And, two second best varieties in (i) grain yield were *AAC Synergy* (5.90

MT/ha) and AAC Connect (5.75 MT/ha) and (ii) in straw yield were Bentley (6.86 MT/ha) and AAC Synergy (6.52 MT/ha).

• *OAC21* had the highest grain protein content (14.7 %). Ten other varieties had higher than 13 % protein. Only *CDC Curchill* (12.5 %) and *CDC Copeland* (12.95 %) had grain protein lower than 13.0 %.

Oat Varieties:

- Eleven oat varieties were evaluated for their yield potential.
- *CDC Arborg* produced the highest grain (6.05 MT/ha) and biomass (11.71 MT/ha) yields, and Vitality the highest straw yield (6.10 MT/ha). Two other equally good varieties in grain yield were *AC Rigodon* (5.83 MT/ha) and *AC Douglas* (5.79 MT/ha).
- Grain yield from the two milling oat varieties *Ore 3541M* and *Ore 3542M* was 5.25 and 5.17 MT/ha, respectively.
- Averaged over 2019 and 2020, *CDC Arborg* (6.01 MT/ha) and *AC Rigodon* (5.93 MT/ha) recorded the highest grain yield!

2.1.2 Winter Cereals:

Winter Wheat Varieties (seeded on August 26, 2019):

- Twelve winter wheat varieties from the west and east of Canada, including *Gallus*, *AAC Icefield*, *JDC78* and *AAC Wildfire*, were compared for their production potential.
- *AAC Wildlife* (5.10 MT/ha), *Keldin* (4.97 MT/ha) and *Gallus* (4.88 MT/ha) were the three highest grain yielding varieties; though the grain yield differences between all the tested varieties weren't significant. The grain yields this year were much lower than that during the last year due to hot and dry weather during June-July this year.
- Goldrush, Moats, CDC Buteo, AAC Wildlife and Gallus had straw yield above 7.0 MT/ha.
- AAC Wildlife (12.13 MT/ha), Gallus (11.93 MT/ha) and Keldin (11.57 MT/ha) recorded the highest Biomass yields.
- Averaged over 2019 and 2020, *Keldin* (6.57 MT/ha), *Gallus* (6.27 MT/ha) and *AAC Gateway* (5.63 MT/ha) produced the highest grain yields. Straw yield (8.97 MT/ha) was highest with *CDC Buteo*.
- JDC 78 was the most dwarf (76 cm tall) and CDC Buteo, Moats and Swainson the tallest varieties (95-96 cm). AAC Gateway with a height of 84 cm was a medium variety.

Late Seeded Winter Wheat Varieties (seeded on September 17, 2019):

- Six varieties were tested under late seeding.
- *Adrianus* (5.90 MT/ha), PRO 81 (5.73 MT/ha) and *CDC Falcon* (5.48 MT/ha) produced the highest grain yields. The yield differences between the varieties were not statistically significant though.
- Straw (7.84 MT/ha) and biomass (12.87 MT/ha) yields were highest with AAC Gateway. CDC Falcon was the next best/equally good variety in straw (7.33 MT/ha), and biomass (12.81 MT/ha) yields.
- AAC Gateway was the most dwarf (76 cm tall) and CDC Falcon the tallest variety (82 cm).

2.1.3 Grain Legumes and Oil Seeds Varieties:

Soybean Varieties:

- Twenty-six varieties were compared for their grain production potential.
- *Bourke* R2X (5.39 MT/ha), *Akras* (5.25 MT/ha), and *Mahony R2* (5.00 MT/ha) recorded the highest grain yields! *Lono R2* had given the highest grain yield during the past two years.
- Mani R2X (23.1 g), PV16 S004 RR2X (22.8 g) and Amiran R2 (22.5 g) topped in 100 kernel weights.
- Averaged over 20 varieties that were common during 2019 and 2020, highest grain yields were produced by *Bourke* R2X (3.57 MT/ha), *Lono R2* (3.45 MT/ha), and *NSC Tilston RR2Y* (3.36 MT/ha). *PV16 S004 RR2X* (3.32 MT/ha) and *Mahony R2* (3.30 MT/ha).
- Lono R2 (124 cm) was the tallest and Bourke R2X (92 cm)/Akras (91 cm) the medium tall varieties.

Edible Bean Varieties:

- Ten edible bean varieties from different classes and of different colours (mostly new from last year) were evaluated for grain yield.
- Grain yield differences between the varieties were statistically not significant. However, AAC Scotty Cranberry beans (5.91 MT/ha), AAC Y015 (5.83 MT/ha) and AAC Whitehorse (5.71 MT/ha) gave better grain yield than all other varieties (4.63 MT/ha in AAC Earlired to 5.61 MT/ha in AAC Argosy). AAC Earlired has been the highest yielding variety in the past several years.
- Averaged over 2019 and 2020, AAC Scotty (4.02 MT/ha), and AAC Argosy (3.87 MT/ha)/and AAC Shock (3.87 MT/ha) registered the highest grain yields.
- Overall, the edible beans grain yield was very good this year.

Edible beans (easy weed control with Basagram Forte) if they fetch a good price in the market could be an integral part of the cropping systems in northwestern Ontario!

Pea Varieties:

- Ten field pea varieties (6 yellow, 3 green and 1 brown/specialty pea) were evaluated.
- Pods were eaten by geese and deer; hence no grain yield could be recorded. Therefore, only biomass yield is reported.
- *CDC Lewochko new this year* (3.82 MT/ha), *CDC Forest* (3.39 MT/ha) and *CDC Spruce* (3.31 MT/ha) produced higher biomass yield than other varieties.
- Last year too, *CDC Forest* and *CDC Spruce* were among the top biomass producing varieties. *Lentil Varieties:*
 - Three lentil varieties (two yellow and one green) were evaluated. Grain yield was very poor (< 1 MT/ha).
 - Averaged over 2019-2020, grain yield was in the order of *CDC Impulse CL* (green; 2.02 MT/ha) = *Lima* (2.00 MT/ha) > *CDC Rosetown* (1.50 MT/ha). Straw yield depicted a trend similar to the grain yield and was 3.63 MT/ha in *CDC Impulse CL*, 3.48 MT/ha in *Lima* and 3.14 in *Rosetown*.

Linseed Flax Co-op Trial (Varieties/Biotypes):

- Twenty varieties/biotypes (7 varieties and 13 biotypes) were compared.
- Flax was seeded on May 21 and was soon caught up in the extremely hot and dry weather in June and hence didn't grow well this year. The seed yield was too low and ranged from 0.28 to 0.74 MT/ha (trial mean 0.46 MT/ha). The yield was too low to properly evaluate the varieties.

Liberty Canola Varieties:

- Nine varieties were evaluated; 7 of which had Clubroot resistance and 5 of them had shatter reduction trait.
- Seed yield was extremely low (trial mean 2.02 MT/ha) because of extremely hot and dry weather in June and hot and dry weather at flowering. Growth as seen from straw yield didn't get converted into seed yield.
- Seed yield was in the order of *LR344PC* (2.42 MT/ha) ≥ *L352C* (2.23 MT/ha) = *L252* (2.21 MT/ha). However, seed yield differences between all the varieties were not significant.
- *LR344PC* (two in one LibertyLink[®] and TruFlex[™] canola with Roundup Ready[®] Technology) recorded the highest straw yield (5.40 MT/ha) followed closely by *L241C* (5.36 MT/ha) and *L345PC* (5.13 MT/ha). Straw yield differences between the varieties too were not significant.
- Four varieties (L255PC, L241C, L230 and L252) were common during 2018-2020. Averaged over 2018-2020, L252 produced the maximum seed yield (4.45 MT/ha) and L241C produced the maximum straw yield (7.25 MT/ha).

• *P* stands for 'Shatter Reduction' and C for Clubroot resistance.

Other Canola Varieties (seeded on May 14, 2020):

• Seven varieties were compared; four Roundup, two Clearfield and one Liberty (as a check).

- Seed yield was extremely low (trial mean 2.04 MT/ha) because of extremely hot and dry weather in June and hot and dry weather at flowering. Growth as seen from straw yield didn't get converted into seed yield.
- Seed yield was in the order of *5545CL* (2.53 MT/ha) = *L241C* (2.52 Mt/ha) ≥ *BY6204TF* (2.32 MT/ha). However, seed yield differences between the varieties were not significant.
- Straw yield followed a bit different trend to the seed yield; *L241C* (6.01MT/ha) > 5545CL (5.21 MT/ha) > *BY6204TF* (4.79 MT/ha). Straw yield differences between the varieties too were not significant.

Winter Canola Varieties:

• Two winter canola varieties, *Mercedes* and *Inspiration*, were seeded on September 6, 2019 and none survived the winter of 2019-2020.

• This is the second year when these two varieties failed to survive during the winter at LUARS. *Mustard Varieties:*

- Four varieties were compared. Due to scant stand the seed yield was very poor and ranged from 0.52 MT/ha (*Adagio*) to 0.86 MT/ha (*AAC Brown 120*).
- Last year, *AC 200* (Oriental mustard; 2.33 MT/ha) and *AC Vulcan* Oriental mustard (2.15 MT/ha) produced higher seed yield than *AAC Brown 120* (1.65 MT/ha) and *Adagio* (1.41 MT/ha).
- Compared to canola, mustard is a low input crop, is used for culinary purposes, can be sold in retail and could fetch a higher market price than canola!

2.1.4 Forage Crops/Varieties:

Comparative Performance of Alfalfa and Galega: Two cuts were taken!

- Dry matter yields from Galega seeded @ 25, 35 or 45 kg seed/ha and alfalfa seeded @ 13 kg/ha in 2011 were compared.
- Alfalfa (mostly volunteer grasses; there wasn't much of alfalfa left in alfalfa plots) recorded highest dry matter yield (5.092 kg/ha) this year. Galega dry matter yield at different seed rates ranged from 3,297 kg/ha to 3,747 kg/ha and these differences in yield were not significant.
- Galega @ 25-45 kg/ha had ~2-3 higher % points in protein content in the first cut and ~1-2 higher % points in protein content in the second cut.
- Averaged over 2012-2020, Galega seeded @ 35 kg/ha produced over 500 kg/ha/year (= over 4,500 kg/ha) higher dry matter yield than alfalfa. Protein content in Galega was 2 % point higher in the first cut and 3 % point higher in the second cut as compared to alfalfa.
- *Higher yield and higher protein content in Galega than in alfalfa, could make Galega a better fodder than alfalfa!*

Optimizing Seeding Rate in Kernza and Comparing its Forage Production Potential with Perennial Rye and in Mixture with Alfalfa:

- Regrowth was too poor to take the second cut. Therefore, only one cut was taken.
- Optimum seed rate of *Kernza* appeared to be 90 seeds/m². At this rate, it produced 4,384 kg/ha dry matter yield. Dry matter yield from *Kernza* at other populations (70, 110 and 130 seeds/m²) varied from 3,460 kg/ha to 3,877 kg/ha.
- *Alfalfa* + *Kernza* (80:20 mixture) recorded the highest dry matter yield (5,761 kg/ha) in 2020 and the highest total dry matter yield over three years (2018-2020 14.2 MT/ha). Dry matter yield from *alfalfa* + *Ace 1* (*Perennial Rye*) 80:20 mixture was 4,676 kg/ha. However, *Ace 1* did not survive beyond winter 2018-2019 and *alfalfa* + *Ace 1* was virtually alfalfa alone.
- In the first cut, protein content was higher in *alfalfa* + *Ace 1* (80:20) mixture (17.4 %) followed by *alfalfa* + *Kernza* 80:20 mixture (16.7 %). Protein content in *Kernza* at varying populations (70-130 seeds/m²) ranged from 10.6 % to 11.8 %.
- RFV was highest (130) in *alfalfa* + *Ace 1* (80:20 mixture) followed by *alfalfa* + *Kernza* 80:20 mixture (119). RFV in *Kernza* varied from 94 to 101.

Comparative performance of Kernza, Perennial Rye, RR Alfalfa, Conventional Alfalfa, Sainfoin and Chicory:

- Perennial Rye, Chicory, and Sainfoin didn't survive and Kernza regrowth after the first cut was too poor to take the first cut.
- Dry matter yield from the two cuts ranged from 4,960 kg/ha (*Kernza*) to 8,475 kg/ha (RR Alfalfa variety *WL319HQ*).
- Other two Roundup Ready alfalfa varieties *WL354HQ* (6,732 kg/ha) and *Mission HVXRR* (6,170 kg/ha) produced lower dry matter yield than the two conventional alfalfa varieties; *135* (7,777 kg/ha) and *Instinct* (7,521 kg/ha).
- First cut protein content in *Kernza* was 16.4 % and ranged from 16.7 to 17.7 % in almost all alfalfa varieties. In the second cut (alfalfa only), the protein content ranged from 18.7 % to 19.4 %. *Protein content in the Roundup ready alfalfa wasn't higher than that in the conventional alfalfa*.
- *Mission HVXRR* that gave the lowest dry matter yield had the highest RFV (136) in the first cut. In the second cut, RFV was highest (145) in *WL354HQ* (Roundup Ready).
- In the three years total dry matter yield, *WL319HQ* had the highest yield (18.0 MT/ha), followed by the two conventional alfalfa varieties (135 and Instinct; both 16.7 MT/ha).

Therefore, RR Alfalfa variety WL319HQ could be recommended for cultivation on farms!

2.2 Fertilizer Management Practices and Soil Amendments (Grain/seed crops):

2.2.1 Cereals:

Nitrogen and Sulphur Management for Malting Barley (Cultivar CDC Bow) Production:

- N from urea and urea + ESN (3:1 on N basis) was compared at 3 rates of N (35, 70 and 105 kg/ha along with a check zero N) at 3 rates of S (0, 8, and 16 kg S/ha).
- Due to hot and dry weather in June, crop growth and the grain yield were poor (trial mean grain yield of only 2.29 MT/ha). It seems the crop couldn't get benefit from ESN due to dry weather.
- Grain yield continued to increase with both urea and urea + ESN up to 70 kg/ha (with each increment of N from zero to 70 kg/ha). Grain yield after 70 kg N/ha either leveled off (urea) or tended to decline (urea + ESN). Averaged over S rates grain yield from urea and urea + ESN was the same.
- Grain yields from urea and urea + ESN (3:1 on N basis) @ 105 kg N/ha, without S, were 2.84 MT/ha and 3.03 MT/ha, respectively (~0.2 MT/ha higher grain yield with urea + ESN than with urea alone). Straw yield increased with every increment of N from 0 to 105 kg N/ha; both with urea and urea + ESN. Straw yields with urea and urea + ESN @ 105 kg/ha were 2.11 and 2.29 MT/ha.
- Grain (3.03 MT/ha) and straw (2.68) yields were highest with urea + ESN @ 105 kg/ha.
- Application of S @ 8 or 16 kg S/ha didn't improve the grain yield (even though the available S at seeding was only 5.75 ppm) but increased the straw yield by over 18 %. This means that the vegetative growth was not translated grain yield (most likely dur to high temperature).
- Averaged over 2018-2020, (i) highest grain (5.51 MT/ha) and straw (5.56 MT/ha) yields were obtained with urea + ESN @ 105 kg N/ha. Urea at the same level of N produced 4.93 MT/ha grain and 4.77 MT/ha straw yield, and (ii) application of S didn't affect the grain/or the straw yield. The results clearly indicate that it pays to use urea + ESN rather than urea alone!
- Grain protein content appeared to be within limits for malting quality and increased from 10.9 % without N application to 12.1-13.3 % with N application at different rates from urea (average 12.8 %) and urea + ESN (average 12.9 %). Application of S didn't impact grain protein content.

Evaluation of Fish Waste (a liquid product) as a Source of N for Spring Wheat (Prosper) Production:

• Urea + ESN (3:1 on N basis), fish waste and 50:50 N blend of fish waste and (urea + ESN) were compared at 4 rates of N; 0, 40, 80 and 120 kg/ha (applied at seeding).

- Seeding was done on June 3. June and July turned out to be hot and exceptionally dry. The plot range was of relatively poor fertility. Therefore, the crop growth in this experiment and consequently the yield was extremely poor (trial mean of only 1.13 MT grains/ha).
- Averaged over 2018-2020, grain yields were in the order of urea + ESN (3.97 MT/ha) ≥ 50 % N from fish waste + 50 % N from urea + ESN (3.83 MT/ha) ≥ fish waste (3.50 MT/ha). Straw yield exhibited a trend similar to the grain yield.
- Grain yield increased up to 80 kg N/ha and leveled off thereafter.

Winter Wheat Survival:

- Effect of agrochemicals (seed treatment with fungicide + insecticide and spray of Abscisic acid, Seaweed Extract and Headline at tillering) at two rates of potassium application (recommended rate and double the recommended rate) was studied on winter wheat survival and yield. However, winter wheat survived very well in all treatments and the treatments' effect on grain and straw yield was non-significant. None of the treatments gave higher grain or straw yield than the check (no fungicides, insecticides or other chemicals with 20 kg K₂O/ha).
- Grain and straw yields in the check treatment were 4.96 and 8.05 MT/ha.
- Doubling the rate of K₂O from 20 to 40 kg/ha didn't improve grain or straw yield.
- Averaged over 2019 and 2020 the results were similar to those during 2020. Which means that none of the treatments was better than the check in grain or straw yield.

Population and NPK Fertilizer Regimes for Winter Rye: Effect was studied on 4 varieties with spring barley (after fall fallow) as check.

- Grain yield was in the order of *Guttino* (5.47 MT/ha) > *Hazlet* (4.71 MT/ha) > *Brasetto* (4.03 MT/ha) > *Bono* (3.55 MT/ha). Straw yield was in the order of *Hazlet* (6.60 MT/ha) > *Guttino* (5.65 MT/ha) > *Brasetto* (4.86 MT/ha) > *Bono* (4.77 MT/ha). Averaged over 2019 and 2020, grain and straw yield trends were the same as in 2020.
- Lowering the rate of NPK fertilizers application from 100 %, but not the lowering of seed rate, lowered the grain, straw and biomass yields. Highest grain yield (5.56 MT/ha) was obtained with 100 % of recommended NPK fertilizers. Among the seed rates, 75 % of recommended seed rate seemed to give the highest grain (4.59 MT/ha) and biomass (10.09 MT/ha) yields; though the yields at 50 or 100 % seed rates were not significantly different from those at 75 % of recommended seed rate. Averaged over 2019 and 2020, 100 % of recommended NPK fertilizers/or seed rate recorded the highest grain, straw and biomass yields.
- Spring barley kept as a check treatment yielded only 2.90 MT grain and 2.83 MT straw/ha this year, because we were late to seed barley (on June 16).

Residual Effect of Winter Rye Cover Crop – Different Seeding and NPK Fertilizer Rates on Canola:

- Winter rye cover crop was seeded in the fall 2019 at different seed and NPK fertilizers rates with a check (fallow plot without seeding rye) and its effect was studied on canola in 2020.
- The canola seed yield was not significantly affected by the cover crop treatments and ranged from 2.87 to 4.24 MT/ha. The seed yield in the fallow (check) plot was 3.43 MT/ha; not significantly less than any of the other treatments. Seed yields this year were only about half of those in the last year due to hot and dry weather in June-July this year.
- The results indicated that there was no benefit of winter rye cover cropping and the fertilizers applied to it on the seed yield of the following canola crop!
- Straw yield ranged from 4.73 MT/ha in 75% seeding rate + 0% NPK to winter rye to 9.31 MT/ha with 50% seeding rate + 50% NPK fertilizers to winter rye.
- Soil analyses data in spring 2020 indicated that winter rye cover crop at any of the seed or fertilizers rates didn't affect organic matter, pH or available nutrients.

2.2.2 Grain Legumes and Oil Seeds:

Evaluation of NK21 as a Source of N and K for Soybean (25-10RY) Production:

- NK21 (a relatively new fertilizer with 21 % N and 21 % K₂O) was compared @ 21, 42, 63 and 84 kg/ha N and K₂O with urea + MOP (muriate of potash; 0-0-60) at equal rates of N and K₂O along with three checks (No N, No K₂O and No N or K₂O).
- Grain yield ranged from 5.24 MT/ha in control (no N and K₂O) to 5.80 MT/ha with NK21 @ 84 kg N/ha and 84 kg K₂O/ha. The grain yield with N and K₂O each @ 21 kg/ha from urea + MOP was 5.75 MT/ha. However, these yield differences were statistically not significant. This means that soybeans could be grown without N and K₂O application at Thunder Bay.
- Grain yields were similar with urea + MOP and NK21.
- Averaged over 2018-2020, the responses to NK21, urea + MOP and rates of N and K₂O were similar to those in 2020.
- It may be kept in mind that NK21 has the advantage of applying two nutrients from one source.

Response of Canola (L252) to High Rates of N Application from Different Sources:

- Application of N @ 90, 180, 240 and 360 kg/ha from urea, urea + ESN (2:1 ratio on N basis), urea superU, urea + urea superU (2:1 ratio on N basis) and urea + ESN + urea superU each @ 60 kg N/ha (total 180 kg N/ha) significantly improved the canola seed yield as compared to the check.
- Maximum seed yield (4.63 MT/ha) was obtained with urea @ 270 kg N/ha followed by urea + ESN + urea superU (4.53 MT/ha) @ 180 kg N/ha (60 kg N/ha from each) and urea superU @ 360 kg N/ha (4.28 MT/ha). However, the increase in seed yield beyond 180 kg N/ha (either as urea or as urea + ESN) wasn't significant.
- Averaged over sources of N, seed yield increase beyond 90 kg N/ha was not significant and averaged over rates of N, all sources/or blends of N had equal seed yield. Low response to N and lack of response to different N sources this year is ascribed to dry weather leading to relatively poor yields.
- Straw yield was highest with urea @ 270 kg N/ha (8.93 MT/ha) followed by urea superU @ 360 kg N/ha (8.10 MT/ha).
- Averaged over 2019 and 2020, urea + ESN @ 180 kg N/ha have as much seed yield (4.78 MT/ha) as urea @ 270 kg N/ha. Urea superU @ 360 kg N/ha was a bit better in seed yield (5.05 Mt/ha) than urea @ 270 kg N/ha/or urea + ESN @ 180 kg N/ha. Straw yield was highest (8.72 MT/ha) with urea superU @ 360 kg N/ha.

• But for the heat and moisture stress in June and July, seed yields and response to N could be better! *Effect of Apex, Top Phos, EXCELIS MAXX and Bio-Stimulants on Canola:*

- Apex (30 % N 5 % ammoniacal N and 25 % urea N, 2.9 % Ca, 1.2 % Mg and 8 % S), or Top Phos (8 % N, 30 % P₂O₅, 0 % K₂O and 4.8 % S) applied at equivalent rates of N/or P from other fertilizers (urea, ESN, ammonium sulphate and 0-45-0) didn't give higher canola seed yield than the fertilizers used by our growers.
- Out of the Biostimulants (FA Starter, IRYS, FL Gold and Genea), FA Starter and IRYS seemed to improve the seed yield.
- Treatment of urea with EXCELIS MAXX equal yield (4.39 MT/ha) to the one from farmers' practice of applying N from a blend of urea, ESN and ammonium sulphate (4.35 MT/ha), when 48 kg S/ha was applied in both the treatments.
- The experiment was seeded on 1st June and June had been very hot and extremely dry. Hence the seed yield was low (trial mean of 4.27 MT/ha) and ranged from 3.86 MT/ha (with FL Gold spray @ 31/ha at first petal falling) to 4.77 MT/ha (with FA Starter spray @ 3 L/ha at 2-3 leaves); seed yield with farmers' practice was 4.35 MT/ha.
- Highest straw yield (7.41 MT/ha) was recorded with Apex.

Evaluation of Gypsum and Ammonium Sulphate as Sources of S for Barley, Canola and Pea Production (Gypsum was applied @ 19.5 kg S/ha in the seed row and ammonium sulphate at the same rate of S was broadcast incorporated at seeding in 2019!) – Residual effect on Wheat:

- Grain yield of wheat was extremely low this year (hot and dry summer and the plot range wasn't all that fertile) trial mean of < 1 MT/ha.
- Averaged over three years (2018-2020) grain yield of wheat after canola (3.82 MT/ha) was ≥ that after pea (3.52 MT/ha) ≥ that after barley (3.35 MT/ha). Straw yield followed a trend similar to that of grain yield.
- There was no residual effect of Gypsum or ammonium sulphate applied to the previous crops on wheat (grain or straw yield).
- Soil analysis in spring 2020 indicated that the nutrients contents (P, K, Ca and Mg) and CEC were somewhat higher after pea than after canola or barley (in the previous year). P content was lowest after barley, which means that barley removed more P than canola and pea.

Effect of Nitrogen and Sulphur on Lentils Grain Yield:

- Treatments included all combinations of 3 rates of N (0, 22.5 and 45 kg N/ha) and 4 rates of S (0. 8, 16 and 24 kg S/ha).
- Grain yield was extremely poor due to hot and dry summer (trial mean of 0.78 MT/ha only; compared to 3.48 MT/ha last year).
- Averaged over 2019-2020, grain yield from check plot (no N or S) was 1.81 MT/ha. Application of N or S didn't improve the grain yield over check.

Effect of P and K on Lentils Grain Yield:

- Treatments included all combinations of 3 rates of P_2O_5 and 3 rates of K_2O each @ 0, 20 and 40 kg/ha).
- Grain yield was very poor due to hot and dry summer (trial mean of <1 MT/ha).
- Application of P or K had no significant effect on lentils grain yield. In other words, lentils didn't respond to application of P and K; may be because of low yield (1.40 MT/ha averaged over 2019-2020).
- From the two nutrient management experiments on lentils, it appears that the lentils could be grown without application on N, P, K and S!

2.2.3 Forages:

Galega:

Comparative Performance of Gypsum and Lime for Galega Production:

- Only one cut was taken this year because of poor regrowth after the first cut.
- Application of gypsum at varying rates (1.25-3.75 MT/ha) didn't improve dry matter yield of Galega. Lime @ 2.14 MT/ha brought a marginal increase in dry matter yield of Galega (by 325 kg/ha). However, this yield increase was statistically not significant.
- Unlike last year, the two amendments didn't improve the first cut protein content this year as compared to the check (no lime/or gypsum application).
- Total yield of the two years (2019 and 2020): Gypsum @ 2.5 MT/ha increased Galega yield by ~700 kg/ha and lime @ 2.14 MT/ha resulted in more than 950 kg/ha increase in yield as compared to the check (no lime/or gypsum application).
- Averaged over 2019 and 2020, Gypsum @ 2.5 MT/ha increased first cut Galega protein content by 2 % points and lime @ 2.14 MT/ha by 1.3 % points as compared to the check (no lime/or gypsum application).

Maximizing Yield and Quality of Galega:

- Only one cut was taken this year because of poor regrowth after the first cut.
- Maximum dry matter yield of Galega was obtained with the application of 60 kg N + 36 kg S + 2 kg B + 7 kg Zn + 2 kg Mn/ha (1,853 kg/ha; ~750 kg/ha increase over check no nutrients application). The next best treatments were 45 kg N + 24/or 36 kg S + 1/or 3 kg B + 7 kg Zn + 2

kg Mn/ha (1,625-1,690 kg/ha). These three treatments were also best in two years (2019 and 2020) total yield.

- Protein content and RFV in the first cut was not affected by the nutrients application.
- Averaged over the two years protein content in the first cut was highest (18.6 %; 1.1 % point higher than the check-no nutrient application) with the application of 60 kg N + 36 kg S + 2 kg B + 7 kg Zn + 2 kg Mn/ha.

2.3 Other Agronomic Practices:

Effect of Fungicides on Diseases and Yield in Spring Cereals:

- Stratego (sprayed at tillering), Prosaro (sprayed at anthesis) and Cramba sprayed a week later than Prosaro were used to control foliar fungal diseases in spring cereals wheat, barley and oats (total 12 treatments).
- There was hardly any disease incidence because of very hot and dry summer; FHB score in particular was zero. Consequently, none of the fungicides treatments gave higher grain yield than no fungicide spray (4.39 MT/ha; averaged over three cereals). Though Septoria score came down from 3 with no fungicide spray to 2 with Stratego, 1 with Stratego and Prosaro and 0 with Stratego, Prosaro and Cramba.
- The three cereals had statistically similar grain yields; wheat (*AAC Wheatland*) 4.04 MT/ha, barley (*CDC Bow*) 4.16 MT/ha and oat (*AC Rigodon*) 4.33 MT/ha. Barley produced the highest straw yield (4.82 MT/ha). Straw yield in wheat and oat was equal at 3.85 MT/ha.

Winter Rye (Cultivar Hazlet) Date of Seeding:

- Winter rye was seeded at 10 days interval from August 25 to October 15.
- Plant height (126 cm), and grain (5.40 MT/ha), straw (6.84 MT/ha) and biomass (12.24 MT/ha) yields were highest with September 15 seeding. Delay in each consecutive seeding from August 25 to September 15 increased the yields and reduced the yields thereafter.
- Seeding on October 15, with only 2.51 MT/ha grain yield, wasn't worth it.
- Averaged over 2018-2020, September 15 seeding produced the highest grain (7.25 MT/ha), straw (7.82 MT/ha) and biomass (15.07 MT/ha) yields. Delay in seeding from September 15 to 25 reduced the grain and straw yields by 1.85 MT/ha (185 kg/ha/day) and 1.59 MT/ha, respectively.

Winter Rye Date and Rate of Seeding:

- Possibility of getting good yield from winter rye by increasing seed rate with delay in seeding was explored.
- Increasing seed rate by 25-50% delay in seeding from September 25 to October 25 didn't help arresting the consistent decline in yield with each successive delay in seeding date.
- Grain, straw and biomass yields of winter rye with September 25 seeding were 3.95, 4.82 and 8.77 MT/ha. Corresponding values for October 25 seeding were 1.51, 2.03 and 3.54 MT/ha.

Effect of Winter Rye Cover Cropping on Spring Crops:

- Winter rye as a cover crop was grown in 2019-2020 fall-winter with and without fertilizers and compared with fallow (no cover cropping) for its effect on six spring crops (wheat, barley, canola, soybean, lentils and flax) production.
- Spring crops were seeded on June 6 and were caught in hot and dry weather. The crops didn't reach maturity. Hence only biomass yields were recorded.
- Winter rye with or without fertilizers didn't produce higher biomass yield of the following spring crops than the fallow (no cover cropping). Among crops (averaged over cover crop treatments), canola recorded the highest biomass yield (6.0 MT/ha), followed by barley (4.02 MT/ha). Biomass yields of other crops were: wheat 0.81 MT/ha, soybean 0.92 MT/ha, lentils 1.13 MT/ha and flax 2.80 MT/ha

Optimizing Seeding Rate in Kernza and Comparing its Grain Production Potential with Perennial Rye:

- *Kernza* was seeded @ 70, 90, 110 and 130 seed/m².
- *Ace 1* (perennial rye) didn't survive to produce any grain yield.

- *Kernza* grain yield was extremely poor this year due to extremely hot and dry summer.
- Highest grain (0.36 MT/ha), straw (10.41 MT/ha) and biomass (10.77 MT/ha) yields were obtained at a seeding rate of 110 seed/m². Same was true for average grain (1:30 MT/ha), straw (12.86 MT/ha) and biomass (14.15 MT/ha) yields over three years (2018-2020).

Alternate Forage legumes:

- Alfalfa, Red clover, Galega, birdfoot trefoil and Sainfoin (last one at 4 seeding rates; 20-50 kg/ha) were compared for their forage production potential and feed quality.
- Dry matter yields were in the order of alfalfa (3,444 kg/ha) ≥ Red clover (2,939 kg/ha) ≥ birdfoot trefoil (2,385 kg/ha) ≥ Galega (1,854 kg/ha) = Sainfoin (> 1,880 kg/ha) @ 30-40 kg seed/ha.
- First cut protein content was > 19 % in birdfoot trefoil, Sainfoin and Red clover and was close to 19 % in alfalfa. Other treatments had 13.4 % or less protein content.
- RFV was higher in alfalfa (130), birdfoot trefoil (128) and Sainfoin (128) than other crops (117-122).

Galega Establishment under Weed Pressure:

- Seeding in the experiment and herbicides spraying was done only in 2018 to work out suitable strategies for weed control in Galega. Only one cut was taken this year, because the crop didn't grow well after the first cut due to hot and dry weather.
- Top dry matter yields of Galega (2,052 kg/ha) were obtained by seeding Galega as early as possible in early spring or after pre plant incorporation of Rival (Trifluralin) @ 3L/ha (2,008 kg/ha).
- Treatments that gave over 20 % protein in Galega were; seeding Galega as early as possible in spring or seeding after killing emerged weeds/or after harvesting barley at boot stage and post emergence spray of Basagram Forte @ 1.75L/ha/or Pursuit @ 210 ml/ha + Ag-Surf @ 0.25% v/v.
- RFV was highest in Galega seeded after harvesting barley (127) and seeding Galega after pre plant incorporation of Rival (Trifluralin) @ 3L/ha (126).

2.4 Extension and Outreach:

A proactive approach to extension and outreach activities was adopted by LUARS for Dissemination of Technology to the end users (farmers, extension scientists and researchers not only in northwestern Ontario, but also in the other parts of the province, and the country/other countries). The impact of our Extension and Outreach activities could be seen in the form of favourable changes as follows:

- Thunder Bay Co-op brought in 88 MT of CDC Bow barley, some Maverick, a Truck load of Brandon, lots of different corn, 7 MT of Akras soybean, L252, L233P (most popular) and L255PC canola, a bit of alfalfa from General Seeds, a few 4010 peas and barley mix.
- Ryan and Fritz Jaspers: Seeded 190 acres Brandon wheat (tested at LUARS), 100 acres corn under biodegradable plastic mulch, 210 acres canola (160 acres Liberty 233P and 50 acres Liberty 255PC), 90 acres Synasolis barley under seeded with alfalfa and timothy, and 40 acres soybeans (Akras). Fritz Jaspers created a new record by getting 2.4 MT grains and 90 small straw bales/acre from his 90 acre Brandon wheat field grown after canola. Wheat at LUARS was found to give higher yield after canola than after other crops! He had a record 1.7 MT/acre seed yield from a 53 acres canola field. His overall canola seed yield averaged at ~1.6 MT/acre. His silage corn (20 MT/acre) and soybean grain (1.23 MT/acre) yields were good too! Jaspers have been applying part of N to their crops as ESN in the seed rows.
- Fred Breukelman seeded 170 acres canola and obtained 1.5 MT seed yield/acre. Fred Breukelman also grew Sorghum Sudangrass, tested at and recommended by LUARS in 40 acres.

- Ed Breukelman: Seeded 150 acres CDC Bow barley (out of which 50 acres under seeded with alfalfa and 40 acres after winter rye that had significant winter kill), 90 acres corn under biodegradable plastic mulch, and 50 acres of Liberty 233P canola. Ed Breukelman got ~2 MT/acre average grain yield from barley and 1.5 MT/acre from canola. Almost all area growers got at least 1.5 MT/acre seed yield from canola this year.
- Bernie Kamphof: Planted 205 acres of corn, 165 acres of Austenson barley and 60 acres of alfalfa all for forage/feed.
- Evan Grootenboer: Applied wood ash in 121 acres, seeded Tabasco Fababeans in 16 acres.
- Mark Veurink: seeded 25 acres winter wheat, 150 acres corn, 100 acres AAC Penhold spring wheat, 95 acres canola and 140 acres barley 2 row. Mark Veurink created a new record by getting a very high grain (2.8 MT/acre) and straw (6 large scale bales/acre) yield from winter wheat. His barley and wheat grain yields were ~2 MT/acre and he got 1.5 MT/ha seed yield from canola.
- Gert Brekveld continued trial cultivation of lentils at his farm in ~20 acres for the second year.
- Gerrit Cramer seeded Bono hybrid winter rye (tested at LUARS) first time in 90 acres. He has applied ESN to winter rye in the seed row. He also seeded 300 acres under cover crop (a mixture of turnip, barley and peas) for the first time.
- Allan and Henry Mol seeded canola for the first time this year in 64 acres and recorded 90 MT seed production, which equaled ~1.5 MT/acre seed yield. Mols also seeded winter wheat (variety AAC Gateway recommended by LUARS) in 42 acres for the first time this year.
- Henry and Peter Aalbers seeded winter rye in 25 acres for the first time.
- Land clearing and tile drainage on farms continued!
- Farmers continued to use multiple sources of N (urea, ESN and ammonium sulphate) for crop production. Farmers have also started applying ESN in the seed row; a practice recommended by LUARS. One producer applied ESN in seed row in over 400 acres for spring wheat, canola, barley, and corn production! Research at LUARS has proved that use of multiple sources of N instead of a single source was conducive to high yields.
- Inspired by research at TBARS/LUARS dairy farmers around Calgary continued to expand their acreage under MasterGraze corn. TBARS pioneered in research on MasterGraze corn that produces 8 MT dry matter yield/ha in 80 days. Its feeding to dairy cows improved milk yield by 3l/cow/day and butter fat yield from 3.93 % to 4.40 %.
- Richardson International Limited procured 12,926 tonnes grains/seeds from local producers as at November 25, 2019 at a value of ~3.8 million dollars from Thunder Bay and Rainy River Districts. This is 4,126 tonnes more than that in 2019 and over 7,100 tonnes more than that in 2018 (see also Figure 1). I believe at least one more Grain Elevator procured grains from the area as well (volumes not known). This is in addition to some malting barley procured by the Canada Malting Company from our area.

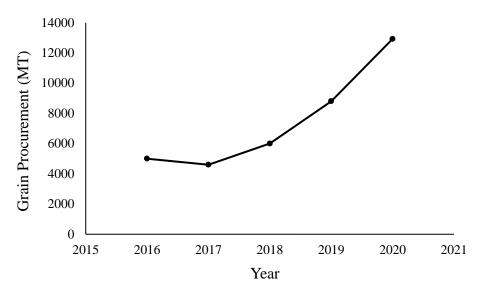


Figure 1: Grain procurement from NWO by Richardson International Limited

Thunder Bay producers are continuing to diversify their cropping systems, renovate, expand/or make additions to their fields and dairy operations! At least one dairy farmer installed a super modern Robot Milk Barn!

Dr. Tarlok Singh Sahota CCA Director LUARS Thunder Bay November 30, 2020

3. Screening of Crop Varieties

Spring Cereals Varieties

3.1.1 Spring Wheat Varieties

PLANTING DATE: May 5, 2020

FERTILIZATION:	74 kg N/ha (152 kg/ha 46-0-0, 38 kg/ha 11-52-0)	20 kg K ₂ O/ha (33 kg/ha 0-0-60)
	20 kg P ₂ O ₅ /ha (38 kg/ha 11-52-0)	
HERBICIDES:	Logic M @ 1.25 L/ha applied post - emergent June 19,	2019
HARVEST DATE:	August 13, 2020	
PREVIOUS CROP:	Berseem Clover	
	YI	ELD

	WHEAT♠	GRAIN 🛧	GRAIN ^b	STRAW ^b	BIOMASS ^b	HARVEST	HEIGHT
VARIETIES	TYPE	kg/kg NUTRIENTS ^b	<u></u>	(MT/ha)	<u></u>	<u>INDEX (%)</u> ^b	<u>(cm)</u> ^b
AAC Penhold	CPSR	23.6	2.69	5.23	7.92	33.8	58
AAC Viewfield	CWRS	19.6	2.23	4.31	6.53	34.1	61
AAC Connery	CWRS	14.5	1.65	5.26	6.91	23.9	67
AAC W1876	CWRS	27.3	3.11	4.51	7.62	43.1	67
AAC Tisdale	CWRS	24.0	2.73	5.66	8.39	32.1	67
AAC Goodwin	CPSR	29.7	3.39	5.25	8.64	39.0	68
AAC Warman	CWRS	25.7	2.93	5.26	8.19	35.4	73
AAC Starbuck	CWRS	31.9	3.63	5.60	9.23	40.3	68
AAC Wheatland	CWRS	27.3	3.12	5.12	8.24	38.1	65
AAC Alida	CWRS	24.8	2.83	5.17	8.01	36.0	74
AAC Crossfield	CPSR	28.0	3.19	5.28	8.47	38.5	70
AAC Succeed	CWAD	18.4	2.10	5.48	7.58	25.8	75
AAC Magnet	CWRS	17.4	1.98	5.02	7.00	27.6	71
CDC Adament	CWRS	25.0	2.85	4.91	7.76	35.2	62
CDC Landmark	CWRS	15.9	1.82	5.39	7.20	24.6	61
Dakosta	CERS	25.8	2.95	4.19	7.13	39.9	71
Easton	CERS	39.1	4.46	5.23	9.69	46.0	65
Ellerslie	CWRS	21.5	2.45	4.14	6.58	38.3	65
Minnedosa	CWSP	29.7	3.39	4.88	8.27	40.9	70
Panata	CWRS	24.8	2.83	5.47	8.30	34.3	75
Prosper	CNHR	24.8	2.83	5.35	8.18	34.5	66
SY Obsidian	CWRS	23.7	2.70	4.92	7.62	34.6	67
AAC Brandon	CWRS	27.3	3.12	6.01	9.12	34.4	66
AAC Prevail	CWRS	19.5	2.23	7.07	9.29	22.6	79
Raven	CERS	32.5	3.70	6.28	9.98	37.1	75
Jake	CWRS	14.3	1.63	5.57	7.21	21.8	70
CDC Reign	CPSR	29.6	3.38	5.06	8.44	40.1	65
ACC Russell VB	CWRS	31.5	3.59	4.85	8.44	42.6	69
ACC Redstar	CWRS	26.8	3.06	5.81	8.87	35.6	68
SY Torach	CWRS	22.4	2.56	5.22	7.78	33.0	61
CS Accelerate	CPSR	26.7	3.04	4.33	7.37	40.7	65
CS Tracker	CWRS	19.9	2.26	5.21	7.48	29.6	65
CDC Credence	CWAD	27.1	3.09	7.04	10.13	31.0	79
MEAN		24.9	2.83	5.27	8.11	34.7	68
C.V. (%)		37.3	37.3	24.5	21.5	28.0	10.7
Pr>F		0.4700	0.4700	0.0860	0.0842	0.7910	0.1100
SE		0.81	0.092	0.1130	0.152	0.85	0.6
LSD (0.05)		NS	NS	NS	NS	NS	NS

Notes:

✤ Indicates nutrients utilization efficiency.

♠ CNHR=Canada Northern Hard Red, CWAD=Canada Western Amber Durum, CWSP=Canada Western Special Purpose,

CERS=Canada Eastern Red Spring, CPSR=Canada Priarie Spring Red, CWRS=Canada Western Red Spring.

a Means followed by the same letter codes were not significantly different based on Tukey's test (P=0.05)

	1000 K	TEST WT.	DA	YS TO	PLANT	TIL	LERS/	LODGING ▼
VARIETIES	<u>WT.(g)</u>	<u>(kg/hl)</u>	HEAD ^b	MATURE ^b	$(m^2)^{b}$	$(m^2)^{b}$	PLANT ^b	<u>(0-9)</u>
AAC Penhold	43	79	53	94	340	483	1.7	0
AAC Viewfield	39	78	53	97	320	497	1.6	0
AAC Connery	38	79	53	93	330	470	1.6	0
AAC W1876	39	78	50	94	283	493	1.8	0
AAC Tisdale	41	78	52	96	377	560	1.5	0
AAC Goodwin	40	80	52	93	377	467	1.3	0
AAC Warman	39	80	49	93	280	453	1.6	0
AAC Starbuck	41	79	51	95	380	530	1.5	0
AAC Wheatland	41	78	51	92	377	543	1.6	0
AAC Alida	40	79	52	92	380	570	1.6	0
AAC Crossfield	38	79	53	95	370	483	1.4	0
AAC Succeed	51	77	56	97	240	447	2.3	0
AAC Magnet	43	78	49	93	257	477	2.0	0
CDC Adament	37	78	52	89	383	547	1.4	0
CDC Landmark	41	77	53	93	330	433	1.4	0
Dakosta	42	79	53	93	383	463	1.3	0
Easton	40	78	57	95	387	517	1.3	0
Ellerslie	37	78	53	94	253	433	1.8	0
Minnedosa	46	74	50	90	397	503	1.3	0
Panata	37	78	48	89	420	550	1.4	0
Prosper	46	78	53	96	317	463	1.5	0
SY Obsidian	41	79	49	96	327	490	1.6	0
AAC Brandon	40	81	53	94	363	610	1.7	0
AAC Prevail	38	69	53	93	310	503	1.7	0
Raven	36	78	56	95	360	470	1.3	0
Jake	36	78	50	88	423	467	1.1	0
CDC Reign	40	80	54	94	437	510	1.2	0
ACC Russell VB	44	78	49	86	457	653	1.5	0
ACC Redstar	39	75	50	90	383	473	1.2	0
SY Torach	34	77	49	96	340	577	1.7	0
CS Accelerate	36	80	49	92	360	487	1.4	0
CS Tracker	33	78	52	96	300	510	1.7	0
CDC Credence	46	77	56	96	360	470	1.4	0
MEAN	40	78	52	93	352	503	1.5	0
C.V. (%)	-	-	4.8	2.9	31.1	23.1	35.8	-
Pr>F	-	-	0.529	0.0743	0.161	0.4700	0.1970	-
SE	-	-	0.2	0.2	9.5	10.1	0.05	-
LSD (0.05)	-	-	NS	NS	NS	NS	NS	-

Notes:

V Lodging is rated on the scale 0-9, where 0 = standing and 9 = flat.

a Means followed by the same letter codes were not significantly different based on Tukey's test (P=0.05)

		DISEASES*								
			TAN							
VARIETIES	BYDV ^b	<u>SEPTORIA</u> ^b	SPOT ^b	RUST ^b	$\overline{\text{FHB}}^{b}$	<u>SMUT</u> ^b				
AAC Penhold	1	2	0	1	0	0				
AAC Viewfield	0	4	0	0	0	0				
AAC Connery	5	1	0	0	0	0				
AAC W1876	5	3	0	0	0	0				
AAC Tisdale	4	2	0	0	0	0				
AAC Goodwin	6	1	0	0	0	0				
AAC Warman	1	4	0	0	0	0				
AAC Starbuck	0	4	0	1	0	0				
AAC Wheatland	1	5	0	0	0	0				
AAC Alida	1	5	0	0	0	0				
AAC Crossfield	4	1	0	0	0	0				
AAC Succeed	3	2	0	0	2	0				
AAC Magnet	2	3	0	0	0	0				
CDC Adament	0	3	0	0	0	0				
CDC Landmark	1	3	0	0	0	0				
Dakosta	4	1	0	0	0	0				
Easton	3	1	0	1	0	0				
Ellerslie	0	3	0	0	0	0				
Minnedosa	4	2	0	0	0	0				
Panata	5	1	0	0	0	0				
Prosper	2	2	0	0	0	0				
SY Obsidian	5	0	0	0	0	0				
AAC Brandon	1	4	0	1	0	0				
AAC Prevail	6	2	0	1	0	0				
Raven	0	2	0	2	2	0				
Jake	7	2	0	0	0	0				
CDC Reign	2	5	0	0	0	0				
ACC Russell VB	4	2	0	0	0	0				
ACC Redstar	1	3	0	1	0	0				
SY Torach	1	4	0	1	0	0				
CS Accelerate	0	3	0	0	0	0				
CS Tracker	1	4	0	0	0	0				
CDC Credence	0	5	0	1	1	0				
MEAN	2	3	0	0	0	0				
C.V. (%)	107.3	72.6	658.2	239.0	494.1	-				
Pr>F	0.4939	0.0863	0.5020	0.2930	0.4270	-				
SE	0.2	0.2	0.0	0.1	0.0	-				
LSD (0.05)	NS	NS	NS	NS	NS	-				

Notes:

* Diseases are rated on the scale 0-9, where 0 = free from infection and 9 = 89 % infection.

a Means followed by the same letter codes were not significantly different based on Tukey's test (P=0.05)

Averaged Over 2019 - 2020

		YIELD							
	WHEAT♠	GRAIN 桊	GRAIN	STRAW	BIOMASS	HARVEST	HEIGHT		
VARIETIES	TYPE	kg/kg NUTRIENTS		(MT/ha)		INDEX (%)	<u>(cm)</u>		
AAC Penhold	CPSR	24.5	3.64	5.21	8.85	40.8	64		
AAC Viewfield	CWRS	24.9	3.86	5.00	8.85	41.6	65		
AAC Connery	CWRS	19.4	3.02	5.22	8.24	34.9	71		
AAC W1876	CWRS	26.3	3.84	4.84	8.68	45.1	73		
AAC Tisdale	CWRS	24.1	3.55	5.94	9.49	36.6	73		
AAC Goodwin	CPSR	30.8	4.58	5.52	10.10	44.7	76		
AAC Warman	CWRS	27.7	4.16	6.25	10.41	39.2	81		
AAC Starbuck	CWRS	31.8	4.68	5.94	10.62	44.2	75		
AAC Wheatland	CWRS	31.5	4.78	5.62	10.40	44.7	72		
AAC Alida	CWRS	27.3	4.10	5.67	9.77	41.3	79		
AAC Crossfield	CPSR	30.5	4.59	5.65	10.24	44.2	73		
AAC Succeed	CWAD	23.1	3.57	5.63	9.20	36.2	79		
AAC Magnet	CWRS	22.2	3.43	5.09	8.52	38.1	78		
CDC Adament	CWRS	25.2	3.73	4.91	8.64	41.8	69		
CDC Landmark	CWRS	21.5	3.36	5.97	9.34	33.7	72		
Dakosta	CERS	26.9	4.00	4.86	8.86	43.9	83		
Easton	CERS	35.8	5.18	6.61	11.79	44.4	72		
Ellerslie	CWRS	23.3	3.49	4.76	8.25	42.2	72		
Minnedosa	CWSP	29.6	4.36	4.66	9.03	47.8	76		
Panata	CWRS	26.8	4.03	5.31	9.33	42.4	80		
Prosper	CNHR	28.9	4.40	5.63	10.04	42.3	73		
SY Obsidian	CWRS	26.7	4.04	5.33	9.36	41.5	73		
AAC Brandon	CWRS	27.4	4.05	6.16	10.20	39.2	72		
AAC Prevail	CWRS	23.1	3.53	7.07	10.60	31.8	83		
MEAN		26.6	4.00	5.54	9.53	40.9	74		

Notes:

♣ Indicates nutrients utilization efficiency.

♠ CNHR=Canada Northern Hard Red, CWAD=Canada Western Amber Durum, CWSP=Canada Western Special Purpose, CERS=Canada Eastern Red Spring, CPSR=Canada Priarie Spring Red, CWRS=Canada Western Red Spring.

3.1.1 Spring Wheat Varieties....Cont'd from previous page Averaged Over 2019 - 2020

	1000 K	TEST WT.	DA	YS TO	PLANT	TILLERS/		LODGING ▼	
VARIETIES	<u>WT.(g)</u>	<u>(kg/hl)</u>	HEAD	MATURE	<u>(m²)</u>	<u>(m²)</u>	<u>PLANT</u>	<u>(0-9)</u>	
AAC Penhold	46	77	49	95	313	535	1.7	0	
AAC Viewfield	40	77	48	96	322	620	1.9	0	
AAC Connery	42	68	48	95	318	622	2.0	0	
AAC W1876	41	76	46	94	310	652	2.1	0	
AAC Tisdale	42	76	47	96	372	682	1.8	0	
AAC Goodwin	43	77	48	93	372	618	1.7	0	
AAC Warman	40	77	46	93	290	633	2.2	0	
AAC Starbuck	43	76	47	95	365	647	1.8	0	
AAC Wheatland	43	76	47	94	372	612	1.6	0	
AAC Alida	40	75	47	93	353	670	1.9	0	
AAC Crossfield	40	76	48	94	338	620	1.8	0	
AAC Succeed	53	73	52	97	247	570	2.3	0	
AAC Magnet	44	75	45	94	275	562	2.0	0	
CDC Adament	40	72	47	91	367	723	2.0	0	
CDC Landmark	42	76	47	94	332	622	1.9	0	
Dakosta	44	78	48	94	362	592	1.6	1	
Easton	41	75	53	96	330	643	1.9	0	
Ellerslie	40	73	48	94	298	587	2.0	0	
Minnedosa	48	73	46	91	333	657	2.0	0	
Panata	40	75	44	90	410	623	1.5	0	
Prosper	48	75	49	95	337	627	1.9	2	
SY Obsidian	42	76	46	95	347	622	1.8	0	
AAC Brandon	41	76	49	94	358	718	2.0	0	
AAC Prevail	40	71	48	93	330	603	1.8	0	
MEAN	43	75	48	94	335	627	1.9	0	

Notes:

\checkmark Lodging is rated on the scale 0-9, where 0 = standing and 9 = flat.

Averaged Over 2019 - 2020

	DISEASES*										
	TAN										
VARIETIES	BYDV	<u>SEPTORIA</u>	<u>SPOT</u>	<u>RUST</u>	<u>FHB</u>	<u>SMUT</u>					
AAC Penhold	1	1	0	0	0	0					
AAC Viewfield	0	2	0	0	0	0					
AAC Connery	2	1	0	0	0	0					
AAC W1876	3	1	0	0	0	0					
AAC Tisdale	2	1	0	0	0	0					
AAC Goodwin	3	0	0	0	0	0					
AAC Warman	1	2	0	0	0	0					
AAC Starbuck	1	2	0	0	0	0					
AAC Wheatland	1	3	0	0	0	0					
AAC Alida	2	3	0	0	0	0					
AAC Crossfield	3	1	0	0	0	0					
AAC Succeed	2	1	0	0	1	0					
AAC Magnet	2	2	0	0	0	0					
CDC Adament	1	2	0	0	0	0					
CDC Landmark	1	2	0	0	0	0					
Dakosta	2	0	0	0	0	0					
Easton	2	0	0	0	0	0					
Ellerslie	1	2	0	0	0	0					
Minnedosa	2	1	0	0	0	0					
Panata	3	1	0	0	0	0					
Prosper	1	1	0	0	0	0					
SY Obsidian	4	0	0	0	0	0					
AAC Brandon	1	2	0	0	0	0					
AAC Prevail	3	1	0	0	0	0					
MEAN	2	1	0	0	0	0					

Notes:

* Diseases are rated on the scale 0-9, where 0 = free from infection and 9 = 89 % infection.

3.1.2 Spring Barley Varieties

PLANTING DATE: May 6, 2020 FERTILIZERS: 75 kg N/ha (152 kg/ha 46-0-0, 39 kg/ha 11-52-0) Logic M @ 1.25 L/ha applied post - emergent June 1, 2020 HERBICIDES: August 11, 2020 HARVEST DATE: PREVIOUS CROP:

.....YIELD.....

20 kg K₂O/ha (34 kg/ha 0-0-60)

20 kg P₂O₅/ha (39 kg/ha 11-52-0)

Berseem Clover

	GRAIN kg/kg 🜲	GRAIN b	STRAW ^b	BIOMASS ^b	HARVEST	HEIGHT	1000 K	TEST WT.
VARIETIES	<u>NUTRIENTS ^b</u>	<u></u>	(MT/ha).	<u></u>	<u>INDEX (%) ^b</u>	$(\text{cm})^{b}$	<u>WT.(g)</u>	<u>(kg/hl)</u>
(TWO-ROW BARLE	CY)							
AB Wrangler	35.3	4.06	6.01	10.1	40	60	50	61
TR1867	43.5	5.00	5.65	10.7	48	60	48	61
AAC Ling	38.2	4.40	5.99	10.4	42	67	46	63
AAC Bell	34.9	4.01	6.47	10.5	38	66	58	64
(SIX-ROW BARLEY))							
AAC Bloomfield	26.0	2.99	3.34	6.3	49	69	47	59
Alyssa	36.0	4.14	6.16	10.3	40	60	46	60
Amberly	39.7	4.57	6.32	10.9	42	67	48	61
Boroe	38.6	4.44	5.87	10.3	43	67	46	59
AB Tofield	35.3	4.06	4.91	8.97	46	64	45	60
Chambly	42.5	4.89	6.16	11.0	45	64	50	55
Oceanik	36.1	4.15	5.81	10.0	42	64	49	59
Synasolis	44.9	5.16	4.85	10.0	51	63	44	59
AB Advantage	37.0	4.26	6.80	11.1	38	64	51	60
AB Cattelac	40.9	4.70	5.36	10.1	46	61	48	61
MEAN	37.8	4.34	5.69	10.0	43.7	64.0	48	60
C.V. (%)	22.8	22.8	25.0	19.7	16.2	11.4	-	-
PR>F	0.2440	0.2440	0.9707	0.5563	0.4800	0.8700	-	-
SE	1.15	0.132	0.190	0.264	0.94	1.0	-	-
LSD (0.05)	NS	NS	NS	NS	NS	NS	-	-

Notes:

♣ Indicates nutrients utilization efficiency.

a Means followed by the same letter codes were not significantly different based on Tukey's test (P=0.05)

3.1.2 Spring Barley Varieties...Cont'd from previous page

							DISEASES*				
	DAY	S TO	PLANT	TILL	ERS/			SPOT			
VARIETIES	HEAD ^a	MATURE ^b	$(m^2)^{b}$	$(m^2)^a$	PLANT ^b	<u>LODGING</u> ▼	BYDV ^a	SEPTORIA	BLOTCH ^b	FHB ^b	SMUT ^a
(TWO-ROW BARLEY)											
AB Wrangler	59 ab	84	303	533 a	2.3	0	$0.0 \ b$	0	3.0	0	2 a
TR1867	60 <i>ab</i>	84	387	567 a	1.7	0	0.3 <i>b</i>	0	2.8	0	0 <i>ab</i>
AAC Ling	57 b	86	437	480 <i>a</i>	0.7	0	3.3 <i>ab</i>	0	2.8	0	$0 \ b$
AAC Bell	57 b	87	313	513 a	0.7	0	0.5 <i>b</i>	0	3.3	0	$0 \ b$
(SIX-ROW BARLEY)											
AAC Bloomfield	61 <i>a</i>	94	137	267 a	0.5	0	0.5 <i>b</i>	0	2.0	0	$0 \ b$
Alyssa	57 ab	84	417	237 a	0.8	0	1.5 <i>ab</i>	0	0.8	0	$0 \ b$
Amberly	56 b	87	360	223 a	0.7	0	1.3 <i>ab</i>	0	1.5	0	$0 \ b$
Boroe	56 b	87	380	163 a	1.4	0	2.0 <i>ab</i>	0	3.0	0	$0 \ b$
AB Tofield	58 ab	89	340	217 a	0.5	0	0.8 <i>ab</i>	0	1.8	0	$0 \ b$
Chambly	55 b	84	370	233 a	1.0	0	0.5 <i>b</i>	0	2.0	0	0 <i>ab</i>
Oceanik	56 b	85	427	190 a	1.1	0	4.0 <i>ab</i>	0	1.0	0	$0 \ b$
Synasolis	60 <i>ab</i>	87	313	290 a	2.4	0	2.0 ab	0	1.0	0	0 <i>b</i>
AB Advantage	59 ab	94	317	410 <i>a</i>	1.3	0	1.8 <i>ab</i>	0	1.5	0	$0 \ b$
AB Cattelac	56 b	84	317	277 a	1.4	0	4.8 <i>a</i>	0	0.5	0	$0 \ b$
MEAN	57	87	344	329	1.2	0	1.6	0	1.9	0	0
C.V. (%)	3.5	4.1	32	66	90	-	122	-	71.5	-	409.9
PR>F	0.0260	0.2700	0.9800	0.0026	0.0660	-	0.001	-	0.0001	-	0.0160
SE	0.3	0.5	14.5	29.1	0.14	-	0.3	-	0.2	-	0.1
LSD (0.05)	2.7	NS	NS	277	NS	-	2.4	-	1.7	-	1

Notes:

* Diseases are rated on the scale 0-9, where 0 = free from infection and 9 = 89 % infection.

 \checkmark Lodging is rated on the scale 0-9, where 0 = standing and 9 = flat.

a Means followed by the same letter codes were not significantly different based on Tukey's test (P=0.05)

Spring Barley Varieties...Cont'd from previous page Average Over 2019-2020

-			YIELD					
	GRAIN 秦	GRAIN	STRAW	BIOMASS	HARVEST	HEIGHT	1000 K	TEST WT.
VARIETIES	<u>kg/kg NUTRIENTS</u>	<u></u>	(MT/ha)	<u></u>	<u>INDEX (%)</u>	<u>(cm)</u>	<u>WT.(g)</u>	<u>(kg/hl)</u>
(SIX-ROW BARLEY)								
AAC Bloomfield	30.2	4.61	4.54	9.2	50	77	53	59
Alyssa	32.8	4.76	5.99	10.7	44	73	51	58
Amberly	38.0	5.56	6.52	12.1	46	77	53	61
Boroe	40.4	6.05	5.40	11.5	52	79	50	58
Chambly	40.8	5.98	5.95	11.9	50	70	54	57
Oceanik	38.2	5.72	5.19	10.9	52	76	52	59
Synasolis	43.5	6.40	4.67	11.1	57	70	47	59
MEAN	38.1	5.61	5.81	11.4	49	75	52	58
						DISEA	ASES*	
	TILLERS	DAY	ΎS ΤΟ				SPOT	
VARIETIES	<u>(m²)</u>	<u>HEAD</u>	MATURE	LODGING▼	BYDV	<u>SEPTORIA</u>	<u>BLOTCH</u>	<u>FHB</u>
(SIX-ROW BARLEY)								
AAC Bloomfield	477	55	94	2	1	0	2	0
Alyssa	485	54	89	1	1	0	1	0
Amberly	463	53	91	1	1	0	2	0
Boroe	420	52	90	1	2	0	4	0
Chambly	502	51	88	1	1	0	2	0
Oceanik	413	52	89	1	3	0	1	0
Synasolis	565	55	91	1	2	0	3	0
MEAN	457	52	89	1	2	0	2	0

Notes:

* Diseases are rated on the scale 0-9, where 0 = free from infection and 9 = 89 % infection.

▼ Lodging is rated on the scale 0-9, where 0 = standing and 9 = flat.

♣ Indicates nutrients utilization efficiency.

3.1.3 Malting Barley Varieties

PLANTING DATE:	May 6, 2020							
FERTILIZERS:	70 kg N/ha (128 kg/ł	70 kg N/ha (128 kg/ha 46-0-0; 38 kg/ha 11-52-0)						
	$20 \text{ kg P}_2\text{O}_5/\text{ha}$ (38 k	g/ha 11-52-0)						
	20 kg K ₂ O/ha (33 kg	/ha 0-0-60)						
HERBICIDES:	Logic M @ 1.25 L/h	a applied post - emergent; June 1, 2020						
HARVEST DATE:	August 6, 2020	OAC 21						
	August 11, 2020	All other varieties						
PREVIOUS CROP:	Berseem Clover							

YIELD										
	GRAIN 🛧	GRAIN b	STRAW ^a	BIOMASS ^b	HARVEST	1000 K	TEST WT.	HEIGHT		
<u>VARIETIES</u>	kg/kg NUTRIENT ^b	<u></u>	(MT/ha)	<u></u>	<u>INDEX (%)</u>	<u>WT.(g)</u>	<u>(kg/hl)</u>	<u>(cm)</u> ^b		
OAC 21	36.6	4.03	2.80 b	6.8	57.9	40	59	54		
Lowe	59.5	6.54	5.33 a	11.9	54.9	53	63	57		
AAC Connect	53.2	5.85	4.94 ab	10.8	53.8	57	62	50		
AC Newdale	47.9	5.27	4.96 ab	10.2	51.8	52	61	54		
CDC Copeland	47.9	5.27	5.74 a	11.0	47.6	53	62	52		
CDC Kindersley	39.5	4.35	4.56 ab	8.9	48.8	47	60	50		
CDC Bow	50.3	5.53	4.71 ab	10.2	53.9	53	61	49		
CDC Fraser	54.2	5.96	5.04 ab	11.0	54.7	58	61	45		
AAC Synergy	53.3	5.86	5.23 a	11.1	52.7	52	61	48		
AAC Goldman	48.6	5.34	5.12 <i>ab</i>	10.5	51.3	60	63	58		
Bentley	44.5	4.90	4.49 ab	9.4	52.1	55	61	49		
AB Brewnet	57.4	6.31	5.89 a	12.2	51.5	53	62	53		
CDC Churchill	48.8	5.37	5.02 ab	10.4	51.6	55	60	52		
MEAN	49.4	5.43	4.91	10.34	52.5	53	61	52		
C.V. (%)	21.0	21.0	21.0	17.5	12.5	-	-	13.1		
PR>F	0.43	0.43	0.0390	0.0860	0.30	-	-	0.46		
SE	1.43	0.158	0.143	0.251	0.91	-	-	0.9		
LSD (0.05)	NS	NS	1.4	NS	NS	-	-	NS		

Notes:

♣ Indicates nutrients utilization efficiency.

a Means followed by the same letter codes were not significantly different based on Tukey's test (P=0.05)

							DISEASES*			
	DAYS	ТО	PLANT	TIL	LERS	LODGING ▼		SPOT		
VARIETIES	HEAD ^a	MATURE ^a	$(m^2)^{b}$	$(m^2)^{b}$	PLANT ^b	<u>(0-9)</u> ^{<i>a</i>}	BYDV ^{<i>a</i>}	BLOTCH ^b S	EPTORIA	^b <u>RUST</u> ^b
OAC 21	52 b	77 c	<u>297</u>	<u>513</u>	2	1 <i>a</i>	7 a	0	0	0
Lowe	60 a	88 ab	<u>323</u>	<u>567</u>	2	0 <i>b</i>	0 <i>b</i>	3	0	1
AAC Connect	59 a	82 <i>bc</i>	397	777	2	0 b	3 <i>ab</i>	2	0	0
AC Newdale	60 <i>a</i>	85 <i>ab</i>	390	573	2	0 b	$0 \ b$	2	0	1
CDC Copeland	60 <i>a</i>	87 <i>ab</i>	330	423	2	0 b	$0 \ b$	2	0	0
CDC Kindersley	60 <i>a</i>	85 <i>ab</i>	303	793	3	0 b	1 b	2	0	0
CDC Bow	60 <i>a</i>	87 <i>ab</i>	480	477	1	$0 \ b$	$0 \ b$	4	0	0
CDC Fraser	59 a	85 ab	357	513	1	0 <i>b</i>	0 <i>b</i>	2	0	0
AAC Synergy	59 a	87 <i>ab</i>	373	507	1	0 b	2 <i>b</i>	1	0	1
AAC Goldman	60 <i>a</i>	89 <i>ab</i>	190	603	3	$0 \ b$	$0 \ b$	1	0	1
Bentley	61 <i>a</i>	89 <i>ab</i>	200	647	4	$0 \ b$	1 <i>b</i>	1	0	1
AB Brewnet	60 a	91 a	307	507	2	0 <i>b</i>	0 <i>b</i>	2	0	1
CDC Churchill	60 <i>a</i>	85 <i>ab</i>	340	583	2	$0 \ b$	3 <i>ab</i>	1	0	0
	(0	~-			•	<u>^</u>			0	0
MEAN	60	87	333	582	2	0	1	2	0	0
C.V. (%)	3.8	4.2	33.5	46.3	61.6	349.8	183.2	68.7	-	220.7
PR>F	0.0010	0.0010	0.1500	0.7916	0.4329	0.0010	0.0180	0.4300	-	0.3450
SE	0.3	0.5	15.3	36.9	0.2	0.0	0.3	0.2	-	0.1
LSD (0.05)	2.8	4.1	NS	NS	NS	0.4	2.9	NS	-	NS

Notes:

 \checkmark Lodging is rated on the scale 0-9, where 0 = standing and 9 = flat.

* Diseases are rated on the scale 0-9, where 0 = free from infection and 9 = 89 % infection.

a Means followed by the same letter codes were not significantly different based on Tukey's test (P=0.05)

3.1.3 Malting Barley Varieties...Cont'd from previous page Grain Malting Quality Analysis 2020

VARIETIES	MOISTURE <u>(%)</u>	EXT FINE <u>(%)</u>	EXT COARSE <u>(%)</u>	<u>F/C</u>	ASBC <u>COLOUR</u>	DP <u>(U/ml)</u>	AA <u>(U/ml)</u>	TOTAL PROTEIN <u>(%)</u>	S/T RATIO <u>(%)</u>	WART PROTEIN <u>(%)</u>	<u>pH</u>	WORT VISCOSITY <u>(Cp)</u>	BG <u>(mg/L)</u>	TURBIDITY <u>(NTU)</u>	FAN <u>(mg/L)</u>
OAC 21	5.5	74.8	71.3	3.5	1.31	116	35.7	14.69	27.8	4.08	6.00	1.84	859	15.9	158
Lowe	5.6	78.9	75.4	3.5	2.06	93	37.8	13.13	27.1	3.55	6.20	1.86	902	39.4	131
AAC Connect	5.2	80.5	78.4	2.1	1.44	113	53.9	13.18	33.9	4.47	5.99	1.52	434	8.2	186
AC Newdale	5.4	79.8	77.2	2.5	1.17	112	50.4	13.79	30.8	4.25	6.08	1.54	566	4.6	165
CDC Copeland	5.2	79.8	77.9	1.9	1.41	133	48.6	12.95	38.4	4.98	6.00	1.54	337	9.2	220
CDC Kindersley	5.2	79.3	77.8	1.5	2.13	123	44.6	13.64	43.1	5.88	5.94	1.53	185	16.6	218
CDC Bow	5.2	79.1	77.1	1.9	1.83	109	46.1	13.70	37.6	5.16	5.94	1.53	343	15.6	209
CDC Fraser	5.4	80.0	78.5	1.5	1.84	159	51.1	13.76	39.4	5.42	5.96	1.49	213	15.6	239
AAC Synergy	5.5	81.0	79.2	1.8	1.51	103	48.5	13.28	34.9	4.63	5.99	1.54	315	9.3	169
AAC Goldman	5.6	79.5	77.5	2.0	1.26	143	50.1	13.95	29.7	4.15	6.00	1.52	377	4.9	156
Bentley	5.5	79.7	77.8	1.9	1.54	126	55.7	13.04	36.0	4.70	5.97	1.48	347	4.6	214
AB Brewnet	5.3	79.7	78.1	1.6	1.52	116	55.9	14.09	35.3	4.98	5.96	1.49	237	5.9	205
CDC Churchill	5.2	80.1	78.4	1.7	1.49	105	52.5	12.50	34.9	4.37	6.02	1.49	284	7.3	170
MEAN	5.4	79.4	77.3	2.1	1.58	119	48.5	13.52	34.5	4.66	6.00	1.57	415	12.1	188

3.1.3 Malting Barley Varieties...Cont'd from previous page Average Over 2017-2020

YIELD												
	GRAIN 秦	GRAIN ^a	STRAW ^a	BIOMASS ^{<i>a</i>}	HARVEST	1000 K	TEST WT.	HEIGHT				
VARIETIES	kg/kg NUTRIENT ^b	<u></u>	(MT/ha)	<u></u>	<u>INDEX (%)</u> ^b	<u>WT.(g)</u>	<u>(kg/hl)</u>	(cm) ^b				
OAC 21	30.5	4.18 bc	4.14 <i>c</i>	8.3 c	49.8	39	57	80				
Lowe	38.4	5.28 abc	6.14 <i>abc</i>	11.4 <i>abc</i>	46.4	46	55	77				
AAC Connect	41.3	5.75 ab	6.23 abc	12.0 <i>ab</i>	47.8	47	58	72				
AC Newdale	26.1	3.65 c	5.61 bc	9.6 bc	37.3	45	55	70				
CDC Copeland	40.6	5.69 ab	6.40 abc	12.1 ab	46.8	50	58	77				
CDC Kindersley	39.5	5.61 <i>ab</i>	5.63 bc	11.2 <i>abc</i>	50.2	42	58	71				
CDC Bow	44.9	6.29 a	8.31 a	14.6 a	44.2	54	58	74				
CDC Fraser	40.0	5.56 abc	6.32 abc	11.9 abc	46.6	51	56	71				
AAC Synergy	42.2	5.90 ab	6.52 <i>ab</i>	12.4 <i>ab</i>	47.7	47	59	74				
Bentley	34.1	4.79 abc	6.86 ab	11.7 <i>abc</i>	41.7	51	56	77				
MEAN	38.6	5.41	6.49	11.93	45.3	48	57	73				
C.V. (%)	39.7	32.3	34.3	28.7	19.5	-	-	23.4				
PR>F	0.1700	0.0540	0.0003	0.0009	0.2020	-	-	0.6000				
SE	1.18	0.135	0.168	0.261	0.71	-	-	1.4				
LSD (0.05)	NS	1.2	1.4	2.200	NS	-	-	NS				

Notes:

♣ Indicates nutrients utilization efficiency.

a Means followed by the same letter codes were not significantly different based on Tukey's test (P=0.05)

3.1.3 Malting Barley Varieties...Cont'd from previous page Average Over 2017-2020

					DISEASES*				
	DAY	′S TO	TILLERS	LODGING ▼			SPOT		
VARIETIES	HEAD ^a	MATURE ^b	$(\text{m}^2)^{b}$	<u>(0-9)</u> ^{<i>a</i>}	BYDV ^b	SEPTORIA ^b	BLOTCH ^b	RUST ^b	
OAC 21	50 b	95	596	1.8 <i>a</i>	4 <i>a</i>	0	0	0	
Lowe	58 a	99	616	0.6 <i>ab</i>	3 <i>ab</i>	0	1	0	
AAC Connect	57 a	98	721	0.6 <i>ab</i>	3 <i>ab</i>	0	1	0	
AC Newdale	60 <i>a</i>	98	412	$0.1 \ b$	1 <i>b</i>	0	1	0	
CDC Copeland	58 a	99	626	0.7 <i>ab</i>	2 <i>ab</i>	0	1	0	
CDC Kindersley	58 a	98	738	0.4 <i>b</i>	3 <i>ab</i>	0	1	0	
CDC Bow	58 a	98	641	0.1 <i>b</i>	1 <i>b</i>	0	1	0	
CDC Fraser	58 a	98	720	0.7 <i>ab</i>	2 <i>b</i>	0	1	0	
AAC Synergy	57 a	98	632	0.6 <i>b</i>	2 <i>ab</i>	0	1	0	
Bentley	59 a	99	639	0.2 <i>b</i>	2 <i>ab</i>	0	1	0	
MEAN	57	98	634	1	2	0	1	0	
C.V. (%)	9.2	9.9	32.5	193.6	78.5	238.8	122.5	218.0	
PR>F	0.0017	0.5700	0.1767	0.0030	0.0076	0.8100	0.9300	0.1800	
SE	0.4	0.8	16.3	0.1	0.2	0.028	0.1	0.04	
LSD (0.05)	3.6	NS	NS	0.8	1.3	NS	NS	NS	

Notes:

* Diseases are rated on the scale 0-9, where 0 = free from infection and 9 = 89 % infection.

▼ Lodging is rated on the scale 0-9, where 0 = standing and 9 = flat.

a Means followed by the same letter codes were not significantly different based on Tukey's test (P=0.05)

3.1.3 Malting Barley Varieties...Cont'd from previous page Average over 2018-2020

YIELD											
	GRAIN 秦	GRAIN ^b	STRAW ^a	BIOMASS ^a	HARVEST	1000 K	TEST WT.	HEIGHT			
VARIETIES	kg/kg NUTRIENT ^b	<u></u>	(MT/ha)	<u></u>	<u>INDEX (%)</u> ^b	<u>WT.(g)</u>	<u>(kg/hl)</u>	(cm) ^b			
OAC 21	33.3	4.38	3.98 <i>b</i>	8.36 <i>b</i>	51.9	37	57	80			
Lowe	45.8	6.17	6.86 <i>a</i>	13.03 <i>a</i>	48.6	45	56	81			
AAC Connect	47.5	6.44	6.68 ab	13.12 <i>a</i>	49.4	45	57	73			
AC Newdale	31.0	4.25	5.74 <i>ab</i>	9.99 ab	41.1	46	56	72			
CDC Copeland	46.0	6.29	6.62 ab	12.91 a	48.8	50	57	79			
CDC Kindersley	43.4	6.00	5.86 <i>ab</i>	11.87 <i>ab</i>	51.0	41	57	72			
CDC Bow	45.3	6.06	7.48 <i>a</i>	13.54 <i>a</i>	45.8	53	58	72			
CDC Fraser	45.8	6.20	6.60 <i>ab</i>	12.80 a	48.9	50	56	71			
AAC Synergy	46.3	6.27	6.37 ab	12.64 a	49.9	44	58	73			
Bentley	37.9	5.17	6.91 <i>a</i>	12.08 ab	43.7	50	56	79			
MEAN	42.9	5.83	6.53	12.37	47.3	47	57	74			
C.V. (%)	33.1	27.1	34.1	26.0	18.1	-	-	26.0			
PR>F	0.3820	0.2200	0.0169	0.0250	0.2210	-	-	0.5100			
SE	1.28	0.142	0.197	0.286	0.79	-	-	1.8			
LSD (0.05)	NS	NS	2.90	2.50	NS	-	-	NS			

♣ Indicates nutrients utilization efficiency.

a Means followed by the same letter codes were not significantly different based on Tukey's test (P=0.05)

3.1.3 Malting Barley Varieties...Cont'd from previous page Average over 2018-2020

					DISEASES*				
	DAY	′S TO	TILLERS	LODGING ▼			SPOT		
VARIETIES	HEAD ^a	MATURE ^b	$(m^2)^{b}$	<u>(0-9)</u> ^{<i>a</i>}	<u>BYDV</u> ^b	<u>SEPTORIA</u>	BLOTCH ^b	<u>RUST</u>	
OAC 21	50 b	92	534	2 a	4 <i>a</i>	0	0	0	
Lowe	58 a	98	614	1 <i>b</i>	2 <i>b</i>	0	1	0	
AAC Connect	55 ab	96	723	1 <i>b</i>	3 <i>ab</i>	0	1	0	
AC Newdale	58 a	96	488	$0 \ b$	1 <i>b</i>	0	1	0	
CDC Copeland	57 a	97	596	1 <i>ab</i>	2 <i>ab</i>	0	1	0	
CDC Kindersley	56 ab	96	721	1 <i>b</i>	3 <i>ab</i>	0	1	0	
CDC Bow	57 a	96	616	$0 \ b$	1 <i>b</i>	0	2	0	
CDC Fraser	56 ab	96	656	1 <i>ab</i>	1 <i>b</i>	0	1	0	
AAC Synergy	56 ab	96	608	1 <i>b</i>	2 <i>ab</i>	0	1	0	
Bentley	57 a	97	669	$0 \ b$	1 <i>b</i>	0	1	0	
MEAN	56	96	622	1	2	0	1	0	
C.V. (%)	9.1	11.1	31.8	160.2	93.7	_	121.6	_	
PR>F	0.0330	0.5500	0.1808	0.0018	0.0053	-	0.7900	-	
SE	0.5	1.0	18.1	0.1	0.2	-	0.1	-	
LSD (0.05)	4	NS	NS	1	1		NS		

* Diseases are rated on the scale 0-9, where 0 = free from infection and 9 = 89 % infection.

▼ Lodging is rated on the scale 0-9, where 0 = standing and 9 = flat.

a Means followed by the same letter codes were not significantly different based on Tukey's test (P=0.05)

3.1.4 Oat Varieties

PREVIOUS CROP: Berseem Clover

			YIELD							
VARIETIES/	GRAIN \clubsuit ^b	GRAIN b	STRAW ^b	BIOMASS ^b	HARVEST	1000 K	TEST WT.	PLANTS	TILI	LERS/
BIOTYPE	<u>kg/kg NUTRIENTS</u>	<u></u>	(kg/ha)	. <u></u>	<u>INDEX (%) ^b</u>	<u>WT.(g)</u>	<u>(kg/hl)</u>	$(m^2)^{b}$	$(m^2)^{b}$	PLANT ^b
AAC Bullet	42.0	4.79	5.40	10.19	47.3	40	48	240	580	2.5
AAC Noranda	44.0	5.02	5.45	10.47	48.1	38	48	407	637	1.9
AAC Roskens	47.2	5.38	4.89	10.27	52.6	43	49	380	740	1.9
AC Rigodon	51.2	5.83	5.07	10.91	53.4	41	48	403	570	1.5
CDC Arborg	53.1	6.05	5.66	11.71	51.7	41	49	343	673	2.1
Akina♦	45.3	5.16	4.64	9.80	53.1	39	46	310	583	1.9
Vitality	45.3	5.16	6.10	11.26	46.1	39	49	403	767	2.2
Ore 3541M	46.1	5.25	4.90	10.15	51.8	41	51	440	660	1.6
Ore 3542M	45.3	5.17	4.85	10.02	51.8	41	50	377	693	1.9
CDC Skye	46.7	5.33	5.52	10.84	49.2	32	51	367	697	2.1
AAC Douglas	50.7	5.79	5.16	10.95	52.9	37	46	363	653	2.0
MEAN	47.0	5.36	5.24	10.60	50.7	39	49	367	659	2.0
C.V. (%)	10.7	10.7	16.1	11.5	7.2	-	-	29.8	30.6	46.5
PR>F	0.2293	0.2293	0.8390	0.6770	0.2750	-	-	0.2697	0.5000	0.7270
SE	0.76	0.087	0.127	0.184	0.55	-	-	16.4	30.4	0.10
LSD (0.05)	NS	NS	NS	NS	NS	-	-	NS	NS	NS

Notes:

♣ Indicates nutrients utilization efficiency.

♦Milling varieties

a Means followed by the same letter codes were not significantly different based on Tukey's test (P=0.05)

				DISEASES*				
VARIETIES/	DAY	S TO	HEIGHT				SPOT	
<u>BIOTYPE</u>	HEAD ^a	MATURE ^a	(cm) ^b	LODGING ▼	BYDV ^b	SEPTORIA ^b	BLOTCH ^b	RUST ^b
AAC Bullet	54 <i>ab</i>	84 <i>a</i>	70	0	1	3	0	0
AAC Noranda	56 a	83 <i>abc</i>	76	0	0	6	0	1
AAC Roskens	52 b	81 c	68	0	5	5	0	0
AC Rigodon	53 ab	83 <i>abc</i>	77	0	0	5	0	0
CDC Arborg	55 ab	82 <i>abc</i>	84	0	0	6	0	0
Akina	53 b	81 <i>abc</i>	80	0	0	4	0	1
Vitality	54 <i>ab</i>	84 <i>ab</i>	80	0	0	5	0	0
Ore 3541M	52 b	81 <i>bc</i>	75	0	3	5	0	0
Ore 3542M	53 b	81 c	74	0	1	5	0	0
CDC Skye	53 b	82 <i>abc</i>	76	0	1	2	0	0
AAC Douglas	53 b	82 abc	69	0	1	6	0	1
MEAN	53	82	75	0	1	5	0	0
C.V. (%)	2.4	1.6	9.9	-	204.6	37.2	-	298.0
PR>F	0.0010	0.0087	0.9700	-	0.7940	0.6010	-	0.6800
SE	0.2	0.2	1.1	-	0.3	0.3	-	0.1
LSD (0.05)	1.6	1.8	NS	-	NS	NS	-	NS

Notes:

* Diseases are rated on the scale 0-9, where 0 = free from infection and 9 = 89 % infection.

▼ Lodging is rated on the scale 0-9, where 0 = standing and 9 = flat.

a Means followed by the same letter codes were not significantly different based on Tukey's test (P=0.05)

3.1.4 Oat Varieties...Cont'd from previous page Average Over 2019-2020

	YIELD											
VARIETIES/	GRAIN 秦	GRAIN	STRAW	BIOMASS	HARVEST	1000 K	TEST WT.					
BIOTYPE	<u>kg/kg NUTRIENTS</u>	<u></u>	(MT/ha)	<u></u>	<u>INDEX (%)</u>	<u>WT.(g)</u>	<u>(kg/hl)</u>					
AAC Bullet	34.3	4.79	6.20	11.00	44.0	42	50					
AAC Noranda	36.4	5.11	4.99	10.10	50.8	41	47					
AAC Roskens	37.4	5.20	4.92	10.11	51.5	42	49					
AC Rigodon	42.3	5.93	5.45	11.38	52.4	44	49					
CDC Arborg	43.0	6.01	5.76	11.77	51.2	43	50					
Akina	37.5	5.28	4.64	9.92	53.4	42	47					
Vitality	34.6	4.74	5.41	10.15	46.6	46	46					
Ore 3541M	36.1	4.99	5.41	10.40	48.3	42	52					
Ore 3542M	36.1	5.01	4.78	9.79	51.4	45	49					
MEAN	37.5	5.23	5.28	10.51	50.0	43	49					
							DIS	ΕA				

							DIS	SEASES*	
VARIETIES/	TILLERS	DA	YS TO	HEIGHT				SPOT	
<u>BIOTYPE</u>	<u>(m²)</u>	<u>HEAD</u>	MATURE	<u>(cm)</u>	LODGING▼	<u>BYDV</u>	<u>SEPTORIA</u>	BLOTCH	<u>RUST</u>
AAC Bullet	477	51	88	78	0	2	2	1	1
AAC Noranda	530	52	88	82	0	1	4	1	2
AAC Roskens	580	49	87	77	0	5	3	1	1
AC Rigodon	480	50	88	85	0	2	3	1	1
CDC Arborg	518	51	87	89	0	1	4	1	1
Akina	462	50	87	81	0	3	3	1	1
Vitality	597	51	88	87	0	2	3	1	1
Ore 3541M	520	49	87	84	0	4	4	1	1
Ore 3542M	578	50	87	80	0	3	3	1	1
MEAN	527	50	88	83	0	3	3	1	1

Notes:

♣ Indicates nutrients utilization efficiency.

* Diseases are rated on the scale 0-9, where 0 = free from infection and 9 = 89 % infection.

▼ Lodging is rated on the scale 0-9, where 0 = standing and 9 = flat.

Winter Cereals Varieties

3.2.1 Winter Wheat Varieties

PLANTING DATE: August 26, 2019 FERTILIZERS: 120 kg N/ha (91 kg/ha 44-0-0; 174 kg/ha 46-0-0)

50 kg P₂O₅/ha (111 kg/ha 0-45-0) 20 kg K₂O/ha (33 kg/ha 0-0-60)

.....YIELD.....

Refine SG @ 30 g/ha applied September 23, 2019 HERBICIDE:

HARVEST DATE: July 29, 2020

PREVIOUS CROP: Fallow

5.6 kg S/ha (35 kg/ha 0-0-0-16-20) 7 kg Zinc/ha (35 kg/ha 0-0-0-16-20) 1 kg Boron/ha (7 kg/ha 0-0-0-15)

	GRAIN 秦	GRAIN b	STRAW ^a	BIOMASS ^a	1000 K	TEST WT.	PLANTS ^b	TILLERS b			
VARIETIES	kg/kg NUTRIENTS ^b	<u></u>	(MT/ha).	<u></u>	<u>WT.(g)</u>	<u>(kg/hl)</u>	/1	m^2			
AAC Elevate	20.3	4.14	5.81 <i>a</i>	9.95 ab	39	77	490	347			
Gallus	24.0	4.88	7.05 <i>a</i>	11.93 ab	44	79	410	190			
Swainson	22.2	4.51	6.32 <i>a</i>	10.83 ab	38	78	383	310			
Moats	18.3	3.73	7.13 <i>a</i>	10.86 ab	36	79	467	577			
AAC Gateway	22.6	4.61	6.50 <i>a</i>	11.11 <i>ab</i>	32	79	477	257			
Keldin	24.4	4.97	6.60 a	11.57 ab	42	78	483	187			
CDC Falcon	22.4	4.56	6.37 a	10.93 ab	36	77	613	480			
CDC Buteo	18.2	3.71	7.10 <i>a</i>	10.81 ab	37	80	463	580			
AAC Wildfire	25.1	5.10	7.02 <i>a</i>	12.13 ab	38	78	490	357			
Goldrush	21.6	4.40	7.15 <i>a</i>	11.55 ab	35	77	440	517			
JDC 78	17.7	3.60	4.47 <i>a</i>	8.07 <i>ab</i>	40	73	530	453			
AAC Icefield	17.6	3.58	3.70 <i>a</i>	7.29 <i>b</i>	32	77	300	390			
MEAN	21.2	4.32	6.27	10.59	37	78	462	387			
C.V. (%)	19.3	19.3	24.8	19.3	-	-	30.3	55.7			
PR>F	0.1340	0.1340	0.0330	0.0240	-	-	0.8050	0.0860			
SE	0.59	0.120	0.224	0.295	-	-	20.2	31.1			
LSD (0.05)	NS	NS	2.10	2.80	-	-	NS	NS			

Notes:

♣ Indicates nutrients utilization efficiency

a Means followed by the same letter codes were not significantly different based on Tukey's test (P=0.05)

3.2.1 Winter Wheat Varieties... Cont'd from previous page

	HARVEST	ARVEST DAYS TO		HEIGHT	LODGING ▼	LEAF SPOT
VARIETIES	INDEX (%) b	HEADING ^a	MATURE ^a	$(cm)^{a}$	<u>(0-9)</u>	<u>(0-9)*</u> ^b
AAC Elevate	41.7	285 abc	323 a	87 <i>ab</i>	0	5
Gallus	41.0	283 c	325 a	89 ab	0	6
Swainson	42.4	283 bc	324 <i>a</i>	95 a	0	4
Moats	35.0	283 bc	324 <i>a</i>	96 a	0	4
AAC Gateway	41.8	283 bc	324 <i>a</i>	84 <i>ab</i>	0	3
Keldin	43.2	285 ab	324 <i>a</i>	85 ab	0	6
CDC Falcon	41.7	285 ab	323 a	88 <i>ab</i>	0	4
CDC Buteo	34.2	285 abc	323 a	96 a	0	4
AAC Wildfire	42.0	286 a	325 a	90 ab	0	6
Goldrush	38.3	285 abc	324 <i>a</i>	89 <i>ab</i>	0	4
JDC 78	44.5	286 a	325 a	76 <i>b</i>	0	5
AAC Icefield	49.5	285 abc	325 a	81 <i>ab</i>	0	7
						_
MEAN	41.3	285	324	88	0	5
C.V. (%)	14.9	0.4	0.3	8.1	-	40.3
PR>F	0.1800	<0.0001	0.0190	0.0090	-	0.4900
SE	0.89	0.2	0.1	1.0	-	0.3
LSD (0.05)	NS	1.3	1.3	9.6	-	NS

Notes:

V Lodging is rated on the scale 0-9, where 0 = standing and 9 = flat.

* Diseases are rated on the scale 0-9, where 0 = free from infection and 9 = 89 % infection.

a Means followed by the same letter codes were not significantly different based on Tukey's test (P=0.05)

3.2.1 Winter Wheat Varieties... Cont'd from previous page Averaged Over 2019 - 2020

YIELD												
	GRAIN 秦	GRAIN	STRAW	BIOMASS	1000 K	TEST WT.	PLANTS	TILLERS				
VARIETIES	<u>kg/kg NUTRIENTS</u>	<u></u>	(MT/ha).		<u>WT.(g)</u>	<u>(kg/hl)</u>	/r	m^{2}				
AAC Elevate	26.6	5.12	7.18	12.30	38	75	540	882				
Gallus	32.7	6.27	8.00	14.27	41	78	485	665				
Swainson	27.8	5.34	7.61	12.95	34	76	450	807				
Moats	25.9	4.95	7.96	12.92	32	77	497	968				
AAC Gateway	29.3	5.63	7.59	13.22	32	78	515	803				
Keldin	34.3	6.57	7.84	14.42	40	76	510	757				
CDC Falcon	24.9	4.81	6.51	11.32	29	73	553	907				
CDC Buteo	24.3	4.66	8.97	13.63	32	78	513	905				
AAC Wildfire	26.4	5.11	8.29	13.41	34	75	517	858				
Goldrush	27.6	5.31	8.06	13.36	30	74	467	958				
JDC 78	25.9	4.95	5.99	10.93	36	73	568	932				
AAC Icefield	25.4	4.86	6.34	11.20	30	75	442	770				
MEAN	27.6	5.30	7.53	12.83	34	76	505	851				

Notes:

Indicates nutrients utilization efficiency

3.2.1 Winter Wheat Varieties... Cont'd from previous page Averaged Over 2019 - 2020

	HARVEST	DAYS	S TO	HEIGHT	LODGING ▼	LEAF SPOT
VARIETIES	INDEX (%)	HEADING	MATURE	<u>(cm)</u>	<u>(0-9)</u>	<u>(0-9)*</u>
AAC Elevate	41.7	291	331	91	0	3
Gallus	43.6	289	333	95	0	3
Swainson	41.2	290	333	105	3	3
Moats	38.2	290	332	101	1	3
AAC Gateway	42.8	290	332	90	0	2
Keldin	45.2	291	333	91	0	4
CDC Falcon	42.5	291	331	92	1	3
CDC Buteo	34.2	291	332	102	3	3
AAC Wildfire	38.8	292	334	98	2	4
Goldrush	39.6	291	332	94	0	2
JDC 78	45.0	291	333	81	0	3
AAC Icefield	44.7	291	333	89	1	4
MEAN	41.5	291	332	94	1.0	3.1

Notes:

▼ Lodging is rated on the scale 0-9, where 0 = standing and 9 = flat.

* Diseases are rated on the scale 0-9, where 0 = free from infection and 9 = 89 % infection.

a Means followed by the same letter codes were not significantly different based on Tukey's test (P=0.05)

3.2.2 Late Seeded Winter Wheat Varieties

PLANTING DATE:	September 17, 2019	
FERTILIZERS:	120 kg N/ha (173 kg/ha 46-0-0; 91 kg/ha 44-0-0)) 5.6 kg S/ha (35 kg/ha 0-0-0-16-20)
	50 kg P ₂ O ₅ /ha (111kg/ha 0-45-0)	7 kg Zinc/ha (35 kg/ha 0-0-0-16-20)
	20 kg K ₂ O/ha (33 kg/ha 0-0-60)	1 kg Boron/ha (7 kg/ha 0-0-0-15)
HERBICIDE:	Post-emergence; Refine SG @ 30 g/ha + 0.2% v	/v surfactant
HARVEST DATE:	July 29,2020	
PREVIOUS CROP:	Fallow	

	1 anow		YIELD			
	GRAIN $\stackrel{\bigstar}{\bullet} {}^{b}$	GRAIN b	STRAW ^a	BIOMASS ^a	HARVEST	1000 K
VARIETIES	<u>kg/kg NUTRIENTS</u>	<u></u>	(t/ha)	<u></u>	<u>INDEX (%)</u> ^b	<u>WT.(g)</u>
JDC 78	22.1	4.49	5.15 b	9.65 a	46.5	40
Lexington	24.0	4.88	5.38 ab	10.26 a	47.6	44
CDC Falcon	26.9	5.48	7.33 ab	12.81 a	43.2	32
Adrianus	29.0	5.90	6.22 ab	12.12 a	48.7	43
PRO 81	28.2	5.73	6.42 <i>ab</i>	12.16 a	47.4	37
AAC Gateway	24.7	5.03	7.84 <i>a</i>	12.87 a	39.0	34
MEAN	25.8	5.25	6.39	11.64	45.4	38
C.V. (%)	15.6	15.6	21.3	15.9	10.5	-
PR>F	0.0891	0.0891	0.0048	0.0042	0.0970	-
SE	0.82	0.167	0.278	0.378	0.97	-
LSD (0.05)	NS	NS	1.70	2.30	NS	-
	TEST WT.	DAYS TO	LODGING ▼	PLANTS	TILLERS	HEIGHT
VARIETIES	<u>(kg/hl)</u>	MATURE ^b	<u>(0-9)</u>	$(m^2)^{b}$	$(m^2)^{b}$	<u>(cm)</u> ^b
JDC 78	74	310	0	460	857	70
Lexington	77	308	0	513	350	78
CDC Falcon	76	308	0	553	867	82
Adrianus	74	310	0	483	480	77
PRO 81	79	309	0	457	517	80
AAC Gateway	77	308	0	423	863	76
MEAN	76	309	0	482	656	77
C.V. (%)	-	0.3	-	18.3	38.8	6.4
PR>F	-	0.5100	-	0.2500	0.8900	0.1400
SE	-	0.2	-	18.0	51.9	1.0
LSD (0.05)	-	NS	-	NS	NS	NS

Notes:

Indicates nutrients utilization efficiency

 \checkmark Lodging is rated on the scale 0-9, where 0 = standing and 9 = flat.

a Means followed by the same letter codes were not significantly different based on Tukey's test (P=0.05)

Grain Legumes Varieties

3.3.1 Soybean Varieties

PLANTING DATE:	May 23, 2020
FERTILIZERS:	35 kg N/ha (76 kg/ha 46-0-0)
HERBICIDE:	Roundup @ 3 L/ha post-emergence, June 16, 2020
HARVEST DATE:	September 22 and 25, 2020
PREVIOUS CROP:	Malting Barley

	CORN	GRAIN YIELD	100 K	HEIGHT
VARIETIES	<u>HEAT UNITS</u>	<u>(MT/ha) ^a</u>	$\underline{WT.(g)}^{a}$	<u>(cm)</u>
Pekko R2	2325	3.39 <i>d</i>	20.3 abcdefg	84
Podaga R2	2525	4.09 abcd	20.3 abcdefg	97
S007-Y4	2350	4.66 abcd	20.6 abcdefg	85
NSC Tilston RR2Y	2400	4.74 abcd	20.3 abcdefg	89
NSC Waston RR2Y	2250	4.61 abcd	19.2 abcdefg	75
NSC Redvers RR2X	2350	3.71 <i>cd</i>	18.5 <i>cdefg</i>	70
NSC Culross RR2X	2400	4.60 abcd	18.7 bcdefg	84
NSC Sperling RR2X	2450	4.44 abcd	19.8 abcdefg	79
NSC Starbuck RR2X	2425	3.88 abcd	19.2 abcdefg	78
NSC Greenridge RR2Y	2500	4.27 abcd	22.2 abcd	79
Mani R2X	2425	3.78 bcd	23.1 <i>a</i>	78
Lono R2	2450	4.78 bcd	18.7 bcdefg	124
Renuka R2X	2350	4.72 abcd	16.3 g	94
Amiran R2	2150	4.24 abcd	22.5 ab	89
S003 - Z4X	2325	4.46 abcd	18.7 bcdefg	88
NSC Newton RR2X	2375	4.25 abcd	20.1 abcdefg	94
Karpo R2	2350	4.11 abcd	19.2 abcdefg	85
Vidar R2X	2500	1.46 abcd	16.5 <i>fg</i>	79
S006 - MYX	2375	3.79 <i>e</i>	17.3 efg	71
S0009 - M2	2275	3.77 bcd	19.8 abcdefg	79
Bourke R2X	2400	5.39 a	20.3 abcdefg	92
Mahony R2	2350	5.00 abc	21.1 <i>abcde</i>	82
PV16 S004 RR2X	2400	4.65 abcd	22.8 ab	92
PV15 S0009 RR2X	2300	4.47 <i>aabcd</i>	19.2 abcdefg	93
S006 - W5	2350	4.73 abcd	17.9 <i>defg</i>	78
Akras	2375	5.25 ab	21.7 abcd	91
MEAN		4.28	19.8	86
C.V. (%)		21.0	11.2	23.1
PR>F		<0.0001	<0.0001	0.0590
SE		0.088	0.21	1.9
LSD (0.05)		0.80	2.2	NS

Notes:

a Means followed by the same letter codes were not significantly different based on Tukey's test (P=0.05)

b Letter codes not displayed for the means were not affected by the treatments (P>0.05)

37

3.3.1 Soybean Varieties...Cont'd from previous page Average Over 2019 - 2020

	CORN	GRAIN YIELD	100 K	HEIGHT
VARIETIES	<u>HEAT UNITS</u>	<u>(MT/ha)</u>	<u>WT.(g)</u>	<u>(cm)</u>
Pekko R2	2325	2.31	18.5	74
Podaga R2	2525	2.96	18.9	86
NSC Tilston RR2Y	2400	3.36	17.9	85
NSC Waston RR2Y	2250	2.91	17.6	73
NSC Redvers RR2X	2350	2.60	16.3	67
NSC Sperling RR2X	2450	3.27	18.2	74
NSC Starbuck RR2X	2425	2.70	18.1	72
NSC Greenridge RR2Y	2500	3.11	21.5	72
Mani R2X	2425	2.80	21.9	71
Lono R2	2450	3.45	16.6	104
NSC Newton RR2X	2375	2.93	18.0	84
Karpo R2	2350	2.74	17.2	77
Vidar R2X	2500	1.68	15.6	76
S006 - MYX	2375	2.89	16.0	68
S0009 - M2	2275	2.34	17.5	77
Bourke R2X	2400	3.57	18.3	81
Mahony R2	2350	3.30	18.9	81
PV16 S004 RR2X	2400	3.32	20.5	81
PV15 S0009 RR2X	2300	2.96	17.2	84
S006 - W5 RR2Y	2350	3.34	15.6	73
MEAN		2.93	18.0	78

3.3.2 Edible Beans Varieties

PLANTING DATE:	June 1, 2020
FERTILIZERS:	35 kg N/ha (76 kg/ha 46-0-0)
HERBICIDES:	None
HARVEST DATE:	September 22, 2020
PREVIOUS CROP:	Soybeans

				GRAIN		
	MARKET	SEED COAT	GRAIN♠	YIELD	100 K WT	TEST WT
VARIETIES	<u>CLASS</u>	COLOUR	kg/kg_NUTRIENTS ^b	<u>(MT/ha)</u> ^b	<u>(g)</u> ^b	(kg/hl)
AC Earlired	Small Red	Red	132.2	4.63	39.4	80
AAC Whitestar	Great Northern	White	150.7	5.27	42.9	77
AAC Y012	Yellow	Yellow	151.7	5.31	48.4	84
AAC Y015	Yellow	Yellow	166.5	5.83	52.4	84
AAC Whitehorse	Great Northern	White	163.2	5.71	39.0	78
Nautica	Navy	White	126.2	4.42	33.3	70
AAC Shock	Navy	White	158.3	5.54	30.5	79
AAC Argosy	Navy	White	160.3	5.61	26.8	77
AAC Scotty	Cranberry	Cream with Red Spots	168.9	5.91	66.0	75
AAC Expedition	Pinto	Cream with Brown Spots	130.6	4.57	42.6	80
MEAN			150.9	5.28	42.1	78
C.V. (%)			14.6	14.6	28.7	-
PR>F			0.6980	0.6980	0.9400	-
SE			4.02	0.141	2.20	-
LSD (0.05)			NS	NS	NS	-

Notes:

♣ Indicates nutrients utilization efficiency.

a Means followed by the same letter codes were not significantly different based on Tukey's test (P=0.05)

3.3.2 Edible Beans Varieties... Cont'd from previous page Averaged Over 2019 - 2020

				GRAIN		
	MARKET	SEED COAT	GRAIN♣	YIELD	100 K WT	TEST WT
VARIETIES	CLASS	COLOUR	<u>kg/kg_NUTRIENTS</u>	<u>(MT/ha)</u>	<u>(g)</u>	<u>(kg/hl)</u>
AC Earlired	Small Red	Red	71.0	3.35	33.7	81
AAC Whitestar	Great Northern	White	79.8	3.71	41.3	77
AAC Y012	Yellow	Yellow	74.6	3.19	41.5	81
AAC Y015	Yellow	Yellow	84.4	3.73	43.5	86
AAC Whitehorse	Great Northern	White	83.1	3.70	36.7	77
Nautica	Navy	White	63.3	2.77	22.5	77
AAC Shock	Navy	White	83.6	3.87	24.5	84
AAC Argosy	Navy	White	84.2	3.87	22.6	79
AAC Scotty	Cranberry	Cream with red spots	88.1	4.02	55.4	77
AAC Expedition	Pinto	Cream with brown spots	65.9	2.90	41.4	81
MEAN			77.8	3.51	36.3	80
			, , . 0	0.01	00.0	00

Notes:

♣ Indicates nutrients utilization efficiency.

3.3.3 Field Pea Varieties

PLANTING DATE:	April 30, 2020
FERTILIZERS:	70 kg N/ha (152 kg/ha 46-0-0)
	20 kg P ₂ O ₅ /ha (44 kg/ha 0-45-0)
	20 kg K ₂ O /ha (33 kg/ha 0-0-60)
HERBICIDES:	Rival @ 3 L/ha on May 14, 2020
HARVEST DATE:	September 24, 2020
PREVIOUS CROP:	Berseem clover

VARIETIES	<u>KIND</u>	BIOMASS <u>(MT/ha)</u>
AAC Carver	Yellow	3.22 a
AAC Comfort	Green	2.45 ab
AAC Chrome	Yellow	2.39 ab
CDC Forest	Green	3.39 a
CDC Spruce	Green	3.31 <i>a</i>
CDC Spectrum	Yellow	2.37 ab
CDC Canary	Yellow	2.66 ab
Gold Harvest Bush Pea	Brown	1.20 <i>b</i>
AAC Profit	Yellow	2.64 <i>ab</i>
CDC Lewochko	Yellow	3.82 a
MEAN		2.75
C.V. (%)		30.1
PR>F		0.7600
SE		0.130
LSD (0.05)		1.20

Notes:

Only plant biomass data were collected as the pods were eaten by geese and deer.

a Means followed by the same letter codes were not significantly different based on Tukey's test (P=0.05)

а

3.3.4 Lentil Varieties

PLANTING DATE:	May 14, 2020
FERTILIZERS:	74 kg N/ha (152 kg/ha 46-0-0, 38 kg/ha 11-52-0)
	20 kg P ₂ O ₅ /ha (38 kg/ha 11-52-0)
	20 kg K ₂ O/ha (33 kg/ha 0-0-60)
HERBICIDES:	Rival @ 3 L/ha applied pre - emergent May 14, 2020
HARVEST DATE:	August 25, 2020
PREVIOUS CROP:	Berseem Clover

		YIELD							
		GRAIN♣	GRAIN ^a	STRAW ^a	BIOMASS	^a HARVEST	1000 K		
VARIETIES	<u>KIND</u>	<u>kg/kg_NUTRIENTS</u> ^a	<u></u>	(MT/ha).	<u></u>	<u>INDEX (%) ^a</u>	<u>(g)</u>		
CDC Rosetown	Yellow	3.3	0.38	1.57	1.95	20.4	29		
CDC Impulse CL	Green	3.4	0.38	1.62	2.00	19.2	48		
CDC Lima	Yellow	3.9	0.44	2.12	2.56	17.7	61		
MEAN		3.5	0.40	1.77	2.17	19.1	46		
C.V. (%)		26.8	26.8	27.3	23.8	26.7	-		
PR>F		0.3183	0.3183	0.2620	0.1980	0.7426	-		
SE		0.27	0.031	0.140	0.149	1.470	-		
LSD (0.05)		NS	NS	NS	NS	NS	-		

Notes:

♣ Indicates nutrients utilization efficiency.

3.3.4 Lentil Varieties...Cont'd from previous page Average Over 2019- 2020

		YIELD						
		GRAIN♣	GRAIN	STRAW	BIOMASS	HARVEST	1000 K	
VARIETIES	<u>KIND</u>	<u>kg/kg_NUTRIENTS</u>	<u></u>	(MT/ha)	<u></u>	<u>INDEX (%)</u>	<u>(g)</u>	
CDC Rosetown	Yellow	11.4	1.50	3.14	4.64	27.7	47	
CDC Impulse CL	Green	15.2	2.02	3.63	5.65	29.1	55	
CDC Lima	Yellow	15.1	2.00	3.48	5.48	30.1	55	
MEAN		13.9	1.84	3.42	5.26	29.0	52	

Notes:

♣ Indicates nutrients utilization efficiency.

Oil Seeds Varieties

3.4.1 Linseed Flax Coop Trial

2020
'ha (152 kg/ha 46-0-0)
er 23, 2020

	SEED \bigstar ^b	SEED ^b	DAYS	S TO*
VARIETIES	<u>kg/kg_NUTRIENTS</u>	YIELD (MT/ha)	FLOWER ^b	MATURE ^b
CDC Bethune	6.2	0.44	52 <i>ab</i>	106
AAC Bright	7.1	0.49	56 a	116
CDC Glas	5.9	0.42	51 <i>ab</i>	103
AAC Marvelous	8.7	0.61	50 ab	111
CDC Rowland	6.3	0.44	53 <i>ab</i>	113
AAC Prairie Sunshine	8.3	0.58	51 <i>ab</i>	111
CDC Dorado	4.7	0.33	43 <i>b</i>	110
FP2573	7.5	0.53	51 <i>ab</i>	113
FP2591	8.4	0.59	50 ab	113
FP2592	10.5	0.74	50 ab	111
FP2596	5.5	0.39	50 ab	106
FP2597	7.6	0.53	48 <i>ab</i>	109
FP2598	6.6	0.46	48 <i>ab</i>	103
FP2599	4.9	0.34	53 <i>ab</i>	112
FP2600	5.9	0.42	51 <i>ab</i>	112
FP2601	4.6	0.32	57 a	112
FP2602	4.1	0.28	58 a	117
FP2603	6.3	0.44	51 <i>ab</i>	103
FP2604	7.8	0.55	54 <i>ab</i>	113
FP2605	4.0	0.28	57 a	113
MEAN	6.6	0.46	52	110
C.V. (%)	32.7	32.7	6.7	3.9
PR>F	0.0880	0.0880	0.0610	0.5600
SE	0.34	0.023	0.5	0.7
LSD (0.05)	4.3	0.30	6.9	8.9

Notes:

♣ Indicates nutrients utilization efficiency.

*Flowering: when 50% of the plants start to blossom; Maturity: when 75% bolls have turned brown.

a Means followed by the same letter codes were not significantly different based on Tukey's test (P=0.05)

3.4.1 Linseed Flax Coop Trial...Cont'd from previous page

	STEM/STRAW DRY DOWN•	DETERMINATE HABIT♠	LODGING ▼
VARIETIES	(1-9)	$(1-9)^{b}$	<u>(0-9)</u>
CDC Bethune	4	7	0
AAC Bright	4	7	0
CDC Glas	4	7	0
AAC Marvelous	4	5	0
CDC Rowland	4	6	0
AAC Prairie Sunshine	4	7	0
CDC Dorado	4	5	0
FP2573	4	4	0
FP2591	4	5	0
FP2592	4	6	0
FP2596	4	7	0
FP2597	4	6	0
FP2598	4	5	0
FP2599	4	6	0
FP2600	4	5	0
FP2601	4	7	0
FP2602	4	3	0
FP2603	4	7	0
FP2604	4	7	0
FP2605	4	7	0
MEAN	4	6	0
C.V. (%)	-	21.5	-
PR>F	-	0.7200	-
SE	-	0.2	-
LSD (0.05)	-	2.7	-

Notes:

•Stem/Straw dry down is rated on the scale 1-9, where 1 = all stems grass green and 9 = all stems brown. •Determinant habit is rated on the scale 1-9, when 1 =greater than 40% plants with flowers/unopened buds and 9 =no plants with flowers and unopened buds.

VLodging is rated on the scale 0-9, where 0 = standing tall and 9 = flat.

a Means followed by the same letter codes were not significantly different based on Tukey's test (P=0.05)

3.4.2 Liberty Canola Varieties

PLANTING DATE: May 14, 2020

 FERTILIZERS:
 186 kg N/ha (239 kg/ha 46-0-0, 91 kg/ha 44-0-0, 38 kg/ha 11-52-0, 150 kg/ha 21-0-0-24)

 20 kg P₂O₅/ha (38 kg/ha 11-52-0)

 20 kg K₂O/ha (33 kg/ha 0-0-60)

 36 kg S/ha (150 kg/ha 21-0-0-24)

VIEI D

HERBICIDES: Rival @ 3 L/ha applied pre-plant incorporate; May 14, 2020

Liberty @ 3 L/ha applied June 8, and June 18, 2020

HARVEST DATE: August 24, 2020

PREVIOUS CROP: Berseem Clover

		•••••	YIELD	•••••					
	SEED 秦	SEED ^a	STRAW ^a	BIOMASS ^b	HARVEST	HEIGHT	DA	Ү ТО	LODGING ▼
VARIETIES	<u>kg/kg NUTRIENT ^a</u>	<u></u>	(MT/ha)	<u></u>	<u>INDEX (%)^{<i>a</i>}</u>	<u>(cm)</u> ^b	FLOWER ^a	MATURE ^a	<u>(0-9)</u>
L255PC	8.3 <i>a</i>	2.17 a	4.42 ab	6.59	32.2 <i>ab</i>	91	45 a	99 <i>b</i>	0
L241C	6.3 <i>a</i>	1.65 <i>a</i>	5.36 a	7.01	23.3 d	94	44 <i>bc</i>	92 g	0
L230	8.3 <i>a</i>	2.18 a	4.33 ab	6.51	33.4 <i>ab</i>	96	44 c	98 c	0
L252	8.5 a	2.21 a	3.48 b	5.69	38.5 a	91	45 a	102 a	0
L345PC	8.3 <i>a</i>	2.18 a	5.13 a	7.31	29.8 bcd	99	45 a	93 <i>f</i>	0
L352C	8.5 a	2.23 a	4.91 a	7.14	31.1 bc	92	45 a	102 a	0
LR344PC	9.2 a	2.42 a	5.40 a	7.81	30.8 bc	94	45 <i>ab</i>	96 d	0
L234PC	6.3 <i>a</i>	1.66 <i>a</i>	4.90 a	6.56	25.3 cd	96	44 <i>abc</i>	95 e	0
B3010M	5.7 <i>a</i>	1.49 <i>a</i>	4.48 ab	5.97	24.5 cd	93	44 <i>bc</i>	95 e	0
MEAN	7.7	2.02	4.71	6.73	29.9	94	44	97	0
C.V. (%)	25.3	25.3	17.6	16.9	17.8	6.9	1.4	3.6	-
PR>F	0.0282	0.0282	0.0026	0.0852	<0.0001	0.6126	<0.0001	<0.0001	-
SE	0.32	0.085	0.138	0.190	0.88	1.1	1.4	0.6	-
LSD (0.05)	2.2	0.58	0.86	NS	4.1	NS	0.47	0.35	

Notes:

♣ Indicates nutrients utilization efficiency. P stands for 'Shatter Reduction' and C stands for 'Clubroot Resistance'.

LR344PC is both the LibertyLink[®] and TruFlex[™] canola with Roundup Ready[®] Technology!

B3010M (straight cut from Brevant[™] seeds) has resistance to Clubroot, Black Leg and Fusarium Wilt.

a Means followed by the same letter codes were not significantly different based on Tukey's test (P=0.05)

b Letter codes not displayed for the means were not affected by the treatment (P>0.05). \checkmark Lodging is rated on the scale 0-9, where 0 = standing and 9 = flat.

Liberty Canola Varieties...Cont'd from previous page Averaged Over 2018 - 2020

DDGING▼
<u>(0-9)</u>
0
0
0
0
0

Notes:

♣ Indicates nutrients utilization efficiency.

▼ Lodging is rated on the scale 0-9, where 0 = standing and 9 = flat.

P stands for 'Shatter Reduction' and C stands for 'Clubroot Resistance'.

3.4.3 Roundup Ready/Clearfield Canola Varieties

PLANTING DATE May 14, 2020

HARVEST DATE: August 24, 2020

PREVIOUS CROP: Berseem Clover

YIELD									
		SEED 秦	SEED b	STRAW ^b	BIOMASS ^b	HARVEST	HEIGHT	DAY	ί то
VARIETIES	TRAIT	kg/kg NUTRIENT ^b	<u></u>	(MT/ha	<u>)</u>	<u>INDEX (%) ^b</u>	(cm) ^b	FLOWER ^a	MATURE ^b
CS2300 •	Roundup Ready	8.5	2.20	4.90	7.10	31.4	97	45 a	98
BY6204TF •	Roundup Ready	9.0	2.32	4.79	7.11	32.8	93	44 ab	98
2028 ‡	Clearfield	5.6	1.45	3.91	5.36	27.1	87	45 <i>ab</i>	100
6086CR •	Roundup Ready	6.2	1.58	3.37	4.95	32.0	88	44 <i>b</i>	99
5545CL ‡	Clearfield	9.8	2.53	5.21	7.74	32.5	97	45 ab	102
L241C †	Liberty	9.8	2.52	6.01	8.53	29.6	95	44 ab	93
PV585GC •	Roundup Ready	6.6	1.69	4.79	6.48	25.7	91	44 <i>b</i>	102
MEAN		7.9	2.04	4.71	6.75	30.1	93	45	99
C.V. (%)		27.9	27.9	24.5	24.1	13.7	7.2	1.3	3.1
PR>F		0.9770	0.9770	0.2830	0.4530	0.0818	0.8840	0.0116	0.6000
SE		0.42	0.108	0.218	0.307	0.78	1.3	0.1	0.6
LSD (0.05)		NS	NS	NS	NS	NS	NS	1	NS

Notes:

♣ Indicates nutrients utilization efficiency. BY6204TF has DefendR rated Blackleg resistance plus Clubroot protection.

C in L241C stands for 'Clubroot Resistance'. L241C was included as a check.

a Means followed by the same letter codes were not significantly different based on Tukey's test (P=0.05)

3.4.4 Winter Canola Varieties

PLANTING DATE:	September 6, 2019
FERTILIZERS:	91 kg N/ha (152 kg/ha 46-0-0, 100 kg/ha 21-0-0-24)
	50 kg P ₂ O ₅ /ha (111 kg/ha 0-45-0)
	20 kg K ₂ O/ha (33 kg/ha 0-0-60)
	24 kg S/ha (100 kg/ha 21-0-0-24)
HERBICIDES:	None
HARVEST DATE:	Winter canola didn't survive in the winter and hence there was nothing to harvest*.
PREVIOUS CROP:	Winter rye
	YIELD
	SEED ♣ SEED STRAW BIOMASS HARVEST HEIGHTDAY TO LODGING▼

 SEED ◆
 SEED STRAW BIOMASS HARVEST HEIGHTDAY TO........ LODGING ▼

 VARIETIES
 kg/kg NUTRIENT
 INDEX (%)
 (cm)
 FLOWER MATURE
 (0-9)

 Mercedes
 Inspiration
 The two varieties didn't survive the winter of 2019-2020!

 MEAN
 MEAN

Notes:

♣ Indicates nutrients utilization efficiency.

▼ Lodging is rated on the scale 0-9, where 0 = standing and 9 = flat.

*This is the second year when winter canola failed to survive at LUARS Thunder Bay.

Mustard Varieties

PLANTING DATE:May 18, 2019FERTILIZERS:70 kg N/ha (154 kg/ha 46-0-0)HERBICIDES:May 14, 2020 applied pre-plant incorporated; Rival @ 3 L/haHARVEST DATE:September 2, 2020

May 19, 2020 applied pre emergent; Roundup @ 3L/ha

PREVIOUS CROP: Winter canola seeded in fall 2019; which hadn't survived

	MUSTARD	SEED \clubsuit ^b	SEED ^b	STRAW ^b	BIOMASS ^b	HARVEST b	DA	Y TO	LODGING▼
VARIETIES	TYPE	<u>kg/kg NUTRIENT</u>	<u></u>	(MT/ha)) <u></u>	<u>INDEX (%)</u>	FLOWER ^b	MATURE ^b	<u>(0-9)</u>
AC Vulcan	Oriental	9.5	0.66	1.88	2.54	25.9	42	95 a	0
Adagio	Yellow	7.5	0.52	2.89	3.41	14.5	38	95 a	0
AC 200	Oriental	9.1	0.64	2.59	3.23	20.0	40	91 <i>b</i>	0
AAC Brown 120	Brown	12.3	0.86	2.80	3.66	23.7	40	89 c	0
MEAN		9.6	0.67	2.54	3.21	21.0	40	92	0
C.V. (%)		47.8	47.8	48.1	46.6	22.2	3.7	2.8	-
PR>F		0.1934	0.1934	0.2140	0.1778	0.9230	0.2510	<0.0001	-
SE		1.15	0.080	0.305	0.374	1.2	0.4	0.6	-
LSD (0.05)		NS	NS	NS	NS	NS	NS	1	-

THET B

.....YIELD.....

Average Over 2018 - 2020

				YIELD.				
	MUSTARD	SEED 秦	SEED	STRAW	BIOMASS	HARVEST	DAY TO	LODGING ▼
VARIETIES	<u>TYPE</u>	<u>kg/kg NUTRIENT</u>	<u></u>	(MT/ha).	<u></u>	<u>INDEX (%)</u>	MATURE	<u>(0-9)</u>
AC Vulcan	Oriental	11.1	1.39	3.04	4.43	30.1	101	0
Adagio	Yellow	8.5	1.04	3.79	4.84	20.5	101	0
AC 200	Oriental	12.4	1.58	3.67	5.26	28.2	100	0
AAC Brown 120 †	Brown	12.2	1.44	3.49	4.93	28.5	98	0
MEAN		10.6	1.34	3.50	4.84	26.3	101	0

Notes:

✤ Indicates nutrients utilization efficiency.
† Average over 2019-2020

V Lodging is rated on the scale 0-9, where 0 = standing and 9 = flat.

a Means followed by the same letter codes were not significantly different based on Tukey's test (P=0.05)

Forages Varieties

3.5.1 Comparative Performance of Alfalfa and Galega

PLANTING DATE:	May 12, 2011 (Alfalfa and Galega)	
FERTILIZER:	45 kg N/ha (62 kg/ha 46-0-0, 79 kg/ha 21-0-0-24)	1 kg B/ha (7 kg/ha 0-0-0-15)
	60 kg K ₂ O/ha (100 kg/ha 0-0-60)	7 kg Zn/ha (35 kg/ha 0-0-0-16-20)
	24 kg S /ha (79 kg/ha 21-0-0-24 , 35 kg/ha 0-0-0-16-20)	
HERBICIDE:	None	
HARVEST DATES:	June 12 and August 7, 2020	

	DRY MATTER YIELD (kg/ha)									
	2018	2019		2020		2018 - 2020	2018 - 2020	2012 - 2020		
CROPS/SEED RATES	TOTAL ^b	TOTAL ^b	<u>1st CUT ^a</u>	2nd CUT ^b	TOTAL ^a	TOTAL ^b	<u>AVERAGE</u> ^b	<u>AVERAGE</u> ^b		
Alfalfa @ 13 kg/ha (Recommended seed rate)^	4177	4653	2785 a	2307	5092^ a	13922	4166	4714		
Galega @ 25 kg/ha	4550	4587	2029 b	1592	3621 b	12758	4059	4978		
Galega @ 35 kg/ha	4396	4704	2110 <i>b</i>	1188	3297 b	12397	4394	5245		
Galega @ 45 kg/ha	4347	4430	2159 b	1627	3786 b	12563	4285	5098		
Galega @ 35 kg/ha + Berseem* @ 13 kg/ha	4648	4661	1951 <i>b</i>	1628	3579 b	12888	4300	4839		
Galega @ 35 kg/ha + Berseem* @ 6.5 kg/ha	4570	4661	2138 b	1609	3747 b	12978	4632	4709		
MEAN	4448	4616	2195	1658	3606	12918	4306	4930		
C.V. (%)	7.3	7.5	13.6	24.1	16.7	6.3	13.0	28.9		
PR>F	0.3316	0.8787	0.0074	0.1220	0.0290	0.2697	0.4080	0.6400		
SE	158.7	187.7	60.9	81.5	131.6	165.1	66.2	102.8		
LSD (0.05)	NS	NS	385	NS	861	NS	NS	NS		

Notes:

* Was seeded only in 2011.

a Means followed by the same letter codes were not significantly different based on Tukey's test (P=0.05)

b Letter codes not displayed for the means were not affected by the treatment (P>0.05)

^Mostly volunteer grasses; there was not much of alfalfa left in alfalfa plots!

3.5.1 Comparative Performance of Alfalfa and Galega...Cont'd from previous page

	FRESH MATTER YIELD (kg/ha)									
	2018	2019				2018 - 2020	2018 - 2020	2012 - 2020		
CROPS/SEED RATES	TOTAL ^b	TOTAL ^b	<u>1st CUT</u> ^b	2nd CUT ^b	TOTAL ^b	TOTAL ^a	AVERAGE ^b	AVERAGE ^b		
Alfalfa @ 13 kg/ha (Recommended seed rate)	22297	25166	15245	7727	22973	70436 a	23680	27156		
Galega @ 25 kg/ha	24921	28748	15747	5639	21387	75056 a	23926	30386		
Galega @ 35 kg/ha	25917	27929	14984	3991	18975	72821 a	24929	31273		
Galega @ 45 kg/ha	25633	27701	15146	5828	20974	74308 a	24155	31292		
Galega @ 35 kg/ha + Berseem* @ 13 kg/ha	25990	28757	15069	5568	20637	75384 a	25166	29215		
Galega @ 35 kg/ha + Berseem* @ 6.5 kg/ha	25329	28980	15980	5498	21477	75786 a	26076	28877		
MEAN	25015	27880	15362	5708	21070	73965	24655	29700		
C.V. (%)	8.2	8.1	5.5	23.4	8.1	5.2	14.0	27.9		
PR>F	0.0764	0.1187	0.5940	0.1255	0.3790	0.0371	0.2500	0.8700		
SE	901.0	1039.0	171.7	272.4	347.5	790.4	406.1	597.0		
LSD (0.05)	NS	NS	NS	NS	NS	4552.0	NS	NS		

Notes:

* Was seeded only in 2011; Residual effect from the year 2011.

a Means followed by the same letter codes were not significantly different based on Tukey's test (P=0.05)

3.5.1 Comparative Performance of Alfalfa and Galega...Cont'd from previous page Quality Parameters on Dry Matter Basis: First Cut

	CRUDE PROTEIN	SOLUBLE PROTEIN	ADF-CP	UIP	ADF	NDF	TDN	NEL	NEG	NEM	RFV
CROPS/SEED RATES	<u>%</u>	<u>% of CP</u>	<u>%</u>	<u>% of CP</u>	<u>%</u>	<u>%</u>	<u>%</u>	Mcal/kg			
Alfalfa @ 13 kg/ha (Recommended seed rate)	20.8	35.9	1.32	36.6	30.9	40.9	70.0	1.60	0.88	1.47	147
Galega @ 25 kg/ha	23.6	35.7	2.22	36.8	35.0	47.0	68.4	1.56	0.79	1.37	122
Galega @ 35 kg/ha	22.7	35.7	2.37	36.8	35.4	47.0	68.8	1.57	0.78	1.36	121
Galega @ 45 kg/ha	22.8	35.8	2.05	36.7	34.3	46.0	68.7	1.56	0.80	1.38	126
Galega @ 35 kg/ha + Berseem* @ 13 kg/ha	21.7	35.7	2.30	36.7	37.5	51.9	66.4	1.51	0.73	1.30	107
Galega @ 35 kg/ha + Berseem* @ 6.5 kg/ha	21.1	35.7	2.12	36.7	37.0	49.4	67.4	1.53	0.74	1.31	113
MEAN	22.1	35.7	2.06	36.7	35.0	47.0	68.3	1.56	0.79	1.37	123
	Р	K	S	Ca	Mg	Cl	Cu	Zn	Fe	Mn	Na
CROPS/SEED RATES	<u>%</u>	<u>%</u>	<u>%</u>	<u>%</u>	<u>%</u>	<u>%</u>	<u>ug/g</u>	<u>ug/g</u>	<u>ug/g</u>	<u>ug/g</u>	<u>%</u>
Alfalfa @ 13 kg/ha (Recommended seed rate)	0.29	2.48	0.25	0.88	0.30	0.39	11.2	28.5	106	21.7	0.04
Galega @ 25 kg/ha	0.40	2.42	0.24	0.96	0.50	0.28	16.8	30.0	217	32.3	0.02
Galega @ 35 kg/ha	0.39	2.33	0.24	0.90	0.48	0.27	16.4	27.2	154	23.1	0.04
Galega @ 45 kg/ha	0.37	2.07	0.22	0.78	0.43	0.30	15.3	27.2	152	22.4	0.03
Galega @ 35 kg/ha + Berseem* @ 13 kg/ha	0.41	2.31	0.25	0.88	0.45	0.30	15.1	30.7	219	30.7	0.03
Galega @ 35 kg/ha + Berseem* @ 6.5 kg/ha	0.40	2.23	0.22	0.87	0.46	0.30	16.4	30.7	153	31.2	0.02
MEAN	0.38	2.31	0.24	0.88	0.44	0.31	15.2	29.1	167	26.9	0.03

Notes:

UIP = Bypass Protein, ADF = Acid Detergent Fibre, NDF = Neutral Detergent Fibre, TDN = Total Digestible Nutrients,

NE = Net Energy, L = Lactation, M = Maintenance, G = Gain and RFV = Relative Feed Value.

3.5.1 Comparative Performance of Alfalfa and Galega...Cont'd from previous page Quality Parameters on Dry Matter Basis: Second Cut

	CRUDE PROTEIN	SOLUBLE PROTEIN	ADF-CP	UIP	ADF	NDF	TDN	NEL	NEG	NEM	RFV
CROPS/SEED RATES	<u>%</u>	<u>% of CP</u>	<u>%</u>	<u>% of CP</u>	<u>%</u>	<u>%</u>	<u>%</u>		Mcal/kg		KI V
	<u>70</u>	<u>/////////////////////////////////////</u>	<u></u>	<u>/////////////////////////////////////</u>	<u></u>	<u></u>	<u></u>	<u></u>			
Alfalfa @ 13 kg/ha (Recommended seed rate)	16.2	36.1	0.97	36.5	34.0	44.3	66.5	1.51	0.81	1.39	131
Galega @ 25 kg/ha	18.1	36.0	1.53	36.6	34.3	47.4	66.8	1.52	0.80	1.38	122
Galega @ 35 kg/ha	17.0	36.1	1.62	36.5	34.7	48.5	67.7	1.54	0.79	1.37	119
Galega @ 45 kg/ha	17.0	36.0	1.51	36.6	35.0	46.9	67.4	1.53	0.79	1.37	122
Galega @ 35 kg/ha + Berseem* @ 13 kg/ha	17.3	36.1	1.53	36.5	35.2	47.6	66.8	1.52	0.78	1.36	120
Galega @ 35 kg/ha + Berseem* @ 6.5 kg/ha	18.8	35.9	1.46	36.6	32.2	46.1	68.3	1.55	0.85	1.44	129
MEAN	17.4	36.0	1.44	36.6	34.2	46.8	67.2	1.53	0.80	1.39	124
	P	17	G	G	N	CI	C	7	Б	N	N
	Р	K	S	Ca	Mg	Cl	Cu	Zn	Fe	Mn	Na
CROPS/SEED RATES	<u>%</u>	<u>%</u>	<u>%</u>	<u>%</u>	<u>%</u>	<u>%</u>	<u>ug/g</u>	<u>ug/g</u>	<u>ug/g</u>	<u>ug/g</u>	<u>%</u>
Alfalfa @ 13 kg/ha (Recommended seed rate)	0.18	1.72	0.18	1.17	0.29	0.32	9.5	23.8	98	17.0	0.06
Galega @ 25 kg/ha	0.20	1.35	0.19	1.28	0.59	0.23	9.6	24.4	255	21.1	0.02
Galega @ 35 kg/ha	0.20	1.29	0.18	1.22	0.56	0.26	9.1	20.0	118	12.7	0.02
Galega @ 45 kg/ha	0.20	1.42	0.18	1.22	0.57	0.26	9.6	22.5	99	20.5	0.02
Galega @ 35 kg/ha + Berseem* @ 13 kg/ha	0.19	1.10	0.20	1.31	0.60	0.25	8.3	21.9	104	24.2	0.03
Galega @ 35 kg/ha + Berseem* @ 6.5 kg/ha	0.23	1.58	0.21	1.22	0.57	0.27	9.9	29.5	235	34.9	0.03
MEAN	0.20	1.41	0.19	1.24	0.53	0.27	9.3	23.7	151	21.7	0.03

Notes:

UIP = Bypass Protein, ADF = Acid Detergent Fibre, NDF = Neutral Detergent Fibre, TDN = Total Digestible Nutrients,

NE = Net Energy, L = Lactation, M = Maintenance, G = Gain and RFV = Relative Feed Value.

3.5.1 Comparative Performance of Alfalfa and Galega...Cont'd from previous page Quality Parameters on Dry Matter Basis: First Cut 2016 - 2020

CROPS/SEED RATES	CRUDE PROTEIN <u>%</u>	SOLUBLE PROTEIN <u>% of CP</u>	ADF-CP <u>%</u>	UIP <u>% of CP</u>	ADF <u>%</u>	NDF <u>%</u>	TDN <u>%</u>	NEL l	NEG <u>Mcal/kg</u>	NEM	RFV
Alfalfa @ 13 kg/ha (Recommended seed rate)	17.7	41.7	1.55	33.9	34.9	46.0	66.2	1.50	0.81	1.42	132
Galega @ 25 kg/ha	19.9	38.4	1.93	32.7	37.4	48.5	63.4	1.43	0.71	1.32	111
Galega @ 35 kg/ha	19.1	35.3	1.95	34.1	37.2	48.0	64.4	1.46	0.73	1.33	115
Galega @ 45 kg/ha	20.4	36.9	2.09	34.0	36.7	48.0	65.1	1.48	0.74	1.34	117
MEAN	19.3	38.1	1.88	33.7	36.5	47.6	64.8	1.47	0.75	1.35	119
	Р	K	S	Ca	Mg	Cl	Cu	Zn	Fe	Mn	Na
CROPS/SEED RATES	<u>%</u>	<u>%</u>	<u>%</u>	<u>%</u>	<u>%</u>	<u>%</u>	<u>ug/g</u>	<u>ug/g</u>	<u>ug/g</u>	<u>ug/g</u>	<u>%</u>
Alfalfa @ 13 kg/ha (Recommended seed rate)	0.30	2.36	0.24	1.17	0.41	0.36	15.2	33.8	386	53.3	0.06
Galega @ 25 kg/ha	0.32	2.08	0.26	0.86	0.43	0.40	14.0	23.4	305	27.6	0.04
Galega @ 35 kg/ha	0.30	2.13	0.20	0.87	0.42	0.38	13.0	16.0	408	24.6	0.03
Galega @ 45 kg/ha	0.31	2.11	0.21	0.90	0.41	0.37	17.5	38.9	387	34.0	0.04
MEAN	0.31	2.17	0.23	0.95	0.42	0.38	14.9	28.0	371	34.9	0.04

Notes:

UIP = Bypass Protein, ADF = Acid Detergent Fibre, NDF = Neutral Detergent Fibre, TDN = Total Digestible Nutrients,

NE = Net Energy, L = Lactation, M = Maintenance, G = Gain and RFV = Relative Feed Value.

3.5.1 Comparative Performance of Alfalfa and Galega...Cont'd from previous page Quality Parameters on Dry Matter Basis: Second Cut 2016 - 2020

CROPS/SEED RATES	CRUDE PROTEIN <u>%</u>	SOLUBLE PROTEIN <u>% of CP</u>	ADF-CP	UIP <u>% of CP</u>	ADF <u>%</u>	NDF <u>%</u>	TDN <u>%</u>	NEL l	NEG <u>Mcal/kg</u>	NEM	RFV
Alfalfa @ 13 kg/ha (Recommended seed rate)	15.0	29.2	1.09	24.9	26.5	35.5	52.6	1.19	0.66	1.16	107
Galega @ 25 kg/ha	18.1	29.3	1.49	25.6	27.3	36.6	51.9	1.18	0.64	1.14	102
Galega @ 35 kg/ha	16.7	29.8	1.65	26.5	28.8	38.6	51.1	1.16	0.61	1.10	95
Galega @ 45 kg/ha	17.0	28.8	1.51	21.4	28.3	38.0	51.5	1.17	0.62	1.11	97
MEAN	16.7	29.3	1.44	24.6	27.7	37.2	51.8	1.18	0.63	1.13	100
	Р	K	S	Ca	Mg	Cl	Cu	Zn	Fe	Mn	Na
CROPS/SEED RATES	<u>%</u>	<u>%</u>	<u>%</u>	<u>%</u>	<u>%</u>	<u>%</u>	<u>ug/g</u>	<u>ug/g</u>	<u>ug/g</u>	<u>ug/g</u>	<u>%</u>
Alfalfa @ 13 kg/ha (Recommended seed rate)	0.24	1.80	0.24	1.29	0.35	0.35	9.6	16.2	145	14.5	0.06
Galega @ 25 kg/ha	0.23	1.49	0.21	1.02	0.49	0.48	10.7	18.3	227	22.9	0.03
Galega @ 35 kg/ha	0.23	1.50	0.19	1.03	0.49	0.29	10.5	15.9	235	19.6	0.02
Galega @ 45 kg/ha	0.24	1.48	0.21	1.08	0.53	0.36	12.2	19.5	291	25.1	0.03
MEAN	0.24	1.57	0.21	1.11	0.47	0.37	10.8	17.5	224	20.5	0.04

Notes:

UIP = Bypass Protein, ADF = Acid Detergent Fibre, NDF = Neutral Detergent Fibre, TDN = Total Digestible Nutrients,

NE = Net Energy, L = Lactation, M = Maintenance, G = Gain and RFV = Relative Feed Value.

3.5.2 Optimizing Seeding Rate in Kernza and Comparing its Forage Production Potential with Perennial Rye and in Mixture with Alfalfa

PLANTING DATE:	July 10, 2017													
FERTILIZER:	70 kg N/ha (15	3 kg/ha 46-0-0))											
	$20 \text{ kg P}_2\text{O}_5/\text{ha}$	(45 kg/ha 0-45	-0)											
	20 kg K ₂ O/ha ((34 kg/ha 0-0-6	50)											
HERBICIDE:	None													
HARVEST DATES:	First cut: June	First cut: June 30, 2020												
PREVIOUS CROP:	Soybean	•												
		DRY MATTER YIELD (kg/ha)												
	2018	2019	2	.020	2018-2020									
TREATMENTS	TOTAL ^a	TOTAL ^a	1st CUT ^a	TOTAL ^a	TOTAL									
80:20 Alfalfa and Kernza	4142 <i>a</i>	4259 a	5761 a	5761 a	14162									
80:20 Alfalfa and Ace 1	3961 ab	3138 <i>b</i>	4676 a	4676 a	11775									
Kernza @ 70 seed/m ²	4204 <i>a</i>	2943 <i>b</i>	3460 a	3460 a	10606									
Kernza @ 90 seed/m ²	4943 a	3141 <i>b</i>	4384 <i>a</i>	4384 <i>a</i>	12468									
Kernza @ 110 seed/m ²	4803 <i>a</i>	3099 b	3877 a	3877 a	11779									
Kernza @ 130 seed/m ²	4948 a	3293 b	3618 a	3618 a	11859									
Ace 1 @ 250 seed/m ²	2644 b	N/A	N/A	N/A	2644									
	1225	2210	1007	1000	10886									
MEAN	4235	3312	4296	4296	10756									
C.V. (%)	22.0	17.6	32.5	32.5	-									
PR>F	0.0003	0.0008	0.0134	0.0134	-									
SE	301.6	213.8	284.7	284.7	-									
LSD (0.05)	1346	807	1586	1586	-									

Notes:

Kernza is a perennial wheatcrest grass variety. Ace 1 is a perennial rye variety

Ace 1 had extremely poor growth and high weed pressure in 2019 and 2020, therefore no harvesting was done Second cut was not taken in 2020 due to poor regrowth

a Means with the same letter were not statistically different according to the Tukey-Kramer test (P=0.05)

3.5.2 Optimizing Seeding Rate in Kernza and Comparing its Forage Production Potential with Perennial Rye and in Mixture with Alfalfa...Cont'd from previous page

	FRESH MATTER YIELD (kg/ha)										
	2018	2019	2	020	2018-2020						
TREATMENTS	TOTAL ^a	TOTAL ^a	1st CUT ^a	TOTAL ^a	<u>TOTAL</u>						
80:20 Alfalfa and Kernza	17433 a	22592 a	19767 a	19767 a	59792						
80:20 Alfalfa and Ace 1	14754 <i>ab</i>	18978 ab	16633 <i>ab</i>	16633 ab	50365						
Kernza @ 70 seed/m ²	15358 ab	16097 b	10517 b	10517 b	41972						
Kernza @ 90 seed/m ²	18263 a	17704 <i>b</i>	12933 ab	12933 ab	48900						
Kernza @ 110 seed/m ²	17713 a	17892 b	12250 ab	12250 <i>ab</i>	47855						
Kernza @ 130 seed/m ²	18461 a	16684 <i>b</i>	11317 b	11317 b	46462						
Ace 1 (a) 250 seed/m ²	11955 b	N/A	N/A	N/A	11955						
MEAN	16277	18325	13903	13903	49224						
C.V. (%)	18.5	16.4	36.6	36.6	-						
PR>F	0.0029	0.0023	0.0032	0.0032	-						
SE	1145.3	1182.3	1038.6	1038.6	-						
LSD (0.05)	4225	3892	5587	5587	-						

Notes:

Kernza is a perennial wheatcrest grass variety. Ace 1 is a perennial rye variety

Ace 1 had extremely poor growth and high weed pressure in 2019 and 2020, therefore no harvesting was done Second cut was not taken in 2020 due to poor regrowth

a Means with the same letter were not statistically different according to the Tukey-Kramer test (P=0.05)

3.5.2 Optimizing Seeding Rate in Kernza and Comparing its Forage Production Potential with Perennial Rye and in Mixture with Alfalfa...Cont'd from previous page Quality Parameters on Dry Matter Basis: First Cut

	CRUDE	SOLUBLE									
	PROTEIN	PROTEIN	ADF-CP	UIP	ADF	NDF	TDN	NEL	NEG	NEM	RFV
<u>TREATMENTS</u>	<u>%</u>	<u>% of CP</u>	<u>%</u>	<u>% of CP</u>	<u>%</u>	<u>%</u>	<u>%</u>	<u></u>	Mcal/kg.		
80:20 Alfalfa and Kernza	16.7	36.1	0.90	36.5	35.2	48.5	63.5	1.44	0.78	1.36	119
80:20 Alfalfa and Ace 1	17.4	36.0	1.09	36.6	36.0	43.7	63.9	1.44	0.76	1.34	130
Kernza @ 70 seed/m ²	11.8	36.7	0.61	36.2	37.2	55.3	64.1	1.45	0.74	1.31	101
Kernza @ 90 seed/m ²	10.6	36.8	0.49	36.1	39.7	59.9	62.4	1.41	0.68	1.25	90
Kernza @ 110 seed/m ²	11.5	36.6	0.53	36.2	38.4	58.4	62.7	1.42	0.70	1.27	94
Kernza @ 130 seed/m ²	11.4	36.7	0.53	36.2	37.4	57.4	64.1	1.45	0.73	1.30	97
Ace 1 $@$ 250 seed/m ²					N/2	4					
MEAN	13.2	36.5	0.69	36.3	37.3	53.9	63.4	1.44	0.73	1.31	105
	Р	Κ	S	Ca	Mg	Cl	Cu	Zn	Fe	Mn	Na
TREATMENTS	<u>%</u>	<u>%</u>	<u>%</u>	<u>%</u>	<u>%</u>	<u>%</u>	<u>ug/g</u>	<u>ug/g</u>	<u>ug/g</u>	<u>ug/g</u>	<u>%</u>
80:20 Alfalfa and Kernza	0.18	1.54	0.14	1.50	0.33	0.35	8.3	16.0	69	24.1	0.09
80:20 Alfalfa and Ace 1	0.20	1.65	0.16	1.74	0.36	0.33	8.9	18.6	55	19.6	0.10
Kernza @ 70 seed/m ²	0.21	1.83	0.11	0.43	0.16	0.46	4.4	14.4	77	31.4	0.03
Kernza @ 90 seed/m ²	0.18	1.52	0.09	0.35	0.14	0.45	3.3	12.6	69	31.3	0.02
Kernza @ 110 seed/m ²	0.21	1.93	0.10	0.43	0.14	0.47	4.7	14.5	90	27.8	0.03
Kernza @ 130 seed/m ²	0.21	1.76	0.10	0.40	0.16	0.47	3.9	14.3	82	32.7	0.03
Ace 1 $@$ 250 seed/m ²					N/2	4					
MEAN	0.20	1.71	0.12	0.81	0.22	0.42	5.6	15.1	74	27.8	0.05

Notes:

UIP = Bypass Protein, ADF = Acid Detergent Fibre, NDF = Neutral Detergent Fibre, TDN = Total Digestible Nutrients,

NE = Net Energy, L = Lactation, M = Maintenance, G = Gain and RFV = Relative Feed Value.

Second cut was not taken in 2020 due to poor regrowth

3.5.2 Optimizing Seeding Rate in Kernza and Comparing its Forage Production Potential with Perennial Rye and in Mixture with Alfalfa...Cont'd from previous page Quality Parameters on Dry Matter Basis: First Cut Average 2018-2020

	CRUDE	SOLUBLE									
	PROTEIN	PROTEIN	ADF-CP	UIP	ADF	NDF	TDN	NEL	NEG	NEM	RFV
<u>TREATMENTS</u>	<u>%</u>	<u>% of CP</u>	<u>%</u>	<u>% of CP</u>	<u>%</u>	<u>%</u>	<u>%</u>	<u></u>	.Mcal/kg	<u></u>	
80:20 Alfalfa and Kernza	16.8	35.9	1.17	33.7	34.1	47.5	63.5	1.44	0.81	1.39	123
80:20 Alfalfa and Ace 1	16.7	36.0	1.14	33.3	34.3	45.4	64.1	1.45	0.80	1.38	128
Kernza @ 70 seed/m ²	13.0	36.3	0.83	34.3	35.6	55.6	64.3	1.46	0.77	1.35	102
Kernza @ 90 seed/m ²	11.9	36.4	0.86	34.1	37.7	58.4	63.0	1.43	0.73	1.30	95
Kernza @ 110 seed/m ²	12.6	36.3	0.88	34.2	36.9	57.3	63.1	1.43	0.74	1.32	98
Kernza @ 130 seed/m ²	12.4	36.4	0.84	33.9	36.4	57.2	63.7	1.44	0.76	1.33	99
Ace 1 @ 250 seed/m ² \bullet	13.3	36.1	1.12	31.4	37.6	60.9	64.0	1.45	0.72	1.29	91
MEAN	13.8	36.2	0.98	33.6	36.1	54.6	63.7	1.44	0.76	1.34	105
	Р	Κ	S	Ca	Mg	Cl	Cu	Zn	Fe	Mn	Na
TREATMENTS	Р <u>%</u>	K <u>%</u>	S <u>%</u>	Ca <u>%</u>	Mg <u>%</u>	Cl <u>%</u>	Cu <u>ug/g</u>	Zn <u>ug/g</u>	Fe <u>ug/g</u>	Mn <u>ug/g</u>	Na <u>%</u>
<u>TREATMENTS</u> 80:20 Alfalfa and Kernza					-						
	<u>%</u>	<u>%</u>	<u>%</u>	<u>%</u>	<u>%</u>	<u>%</u>	<u>ug/g</u>	<u>ug/g</u>	<u>ug/g</u>	<u>ug/g</u>	<u>%</u>
80:20 Alfalfa and Kernza	<u>%</u> 0.24	<u>%</u> 2.04	<u>%</u> 0.22	<u>%</u> 1.43	<u>%</u> 0.30	<u>%</u> 0.41	<u>ug/g</u> 9.2	<u>ug/g</u> 19.4	<u>ug/g</u> 90	<u>ug/g</u> 30.7	<u>%</u> 0.08
80:20 Alfalfa and Kernza 80:20 Alfalfa and Ace 1	<u>%</u> 0.24 0.24	<u>%</u> 2.04 2.01	<u>%</u> 0.22 0.22	<u>%</u> 1.43 1.49	<u>%</u> 0.30 0.31	<u>%</u> 0.41 0.41	<u>ug/g</u> 9.2 9.0	<u>ug/g</u> 19.4 19.6	<u>ug/g</u> 90 75	<u>ug/g</u> 30.7 28.0	<u>%</u> 0.08 0.08
80:20 Alfalfa and Kernza 80:20 Alfalfa and Ace 1 Kernza @ 70 seed/m ²	<u>%</u> 0.24 0.24 0.25	<u>%</u> 2.04 2.01 2.26	<u>%</u> 0.22 0.22 0.17	<u>%</u> 1.43 1.49 0.44	<u>%</u> 0.30 0.31 0.17	<u>%</u> 0.41 0.41 0.54	<u>ug/g</u> 9.2 9.0 5.9	<u>ug/g</u> 19.4 19.6 15.7	<u>ug/g</u> 90 75 97	<u>ug/g</u> 30.7 28.0 33.3	<u>%</u> 0.08 0.08 0.05
80:20 Alfalfa and Kernza 80:20 Alfalfa and Ace 1 Kernza @ 70 seed/m ² Kernza @ 90 seed/m ²	% 0.24 0.24 0.25 0.23	<u>%</u> 2.04 2.01 2.26 2.13	<u>%</u> 0.22 0.22 0.17 0.16	<u>%</u> 1.43 1.49 0.44 0.44	% 0.30 0.31 0.17 0.17	<u>%</u> 0.41 0.41 0.54 0.53	<u>ug/g</u> 9.2 9.0 5.9 5.2	<u>ug/g</u> 19.4 19.6 15.7 14.6	<u>ug/g</u> 90 75 97 96	<u>ug/g</u> 30.7 28.0 33.3 34.8	<u>%</u> 0.08 0.08 0.05 0.04
80:20 Alfalfa and Kernza 80:20 Alfalfa and Ace 1 Kernza @ 70 seed/m ² Kernza @ 90 seed/m ² Kernza @ 110 seed/m ²	% 0.24 0.25 0.23 0.25	<u>%</u> 2.04 2.01 2.26 2.13 2.36	<u>%</u> 0.22 0.22 0.17 0.16 0.17	<u>%</u> 1.43 1.49 0.44 0.44 0.48	% 0.30 0.31 0.17 0.17 0.17	<u>%</u> 0.41 0.41 0.54 0.53 0.55	<u>ug/g</u> 9.2 9.0 5.9 5.2 6.0	<u>ug/g</u> 19.4 19.6 15.7 14.6 15.6	<u>ug/g</u> 90 75 97 96 109	<u>ug/g</u> 30.7 28.0 33.3 34.8 32.8	<u>%</u> 0.08 0.08 0.05 0.04 0.05

Notes:

UIP = Bypass Protein, ADF = Acid Detergent Fibre, NDF = Neutral Detergent Fibre, TDN = Total Digestible Nutrients,

NE = Net Energy, L = Lactation, M = Maintenance, G = Gain and RFV = Relative Feed Value.

• Ace 1 quality from 2018 only

3.5.3 Comparative Performance of Kernza, Perennial Rye, Roundup Ready Alfalfa, Conventional Alfalfa, Sainfoin, and Chicory

PLANTING DATE:	July 7, 2017
FERTILIZER:	70 kg N/ha (143 kg/ha 46-0-0, 39 kg/ha 11-52-0)
	20 kg P ₂ O ₅ /ha (39 kg/ha 11-52-0)
	20 kg K ₂ O/ha (34 kg/ha 0-0-60)
HERBICIDE:	None
HARVEST DATES:	First cut: June 29, 2020 Treatments 1, 5-9 Second cut: August 6, 2020 Treatments 5-9
PREVIOUS CROP:	Soybean

DRY MATTER YIELD (kg/ha)								
			2018	2019		2020		2018 - 2020
Trt #	[‡] <u>VARIETIES</u>	CROP	TOTAL ^a	<u>TOTAL^a</u>	<u>1st CUT</u> ^b	2nd CUT ^b	TOTAL ^a	TOTAL
1	Kernza	Perennial Wheatgrass	4518 a	4328 a	4960	-	4960 b	13806
2	Ace 1	Perennial Rye	3179 bc	1459 <i>b</i>	-	-	-	4638
4	Choice Chicory	Chicory	735 e	1042 <i>b</i>	-	-	-	1777
5	WL319HQ	Roundup Ready Alfalfa	5101 a	4429 a	6680	1795	8475 a	18005
6	WL354HQ	Roundup Ready Alfalfa	4268 a	4093 a	4732	2000	6732 ab	15093
7	135	Alfalfa	4842 <i>a</i>	4030 a	5954	1823	7777 a	16649
8	Instinct	Alfalfa	4785 a	4378 a	5655	1866	7521 ab	16684
9	Mission HVXRR	Roundup Ready Alfalfa	4143 ab	4486 a	4445	1726	6170 ab	14799
10	Mountianview	Sainfoin	2259 cd	1104 <i>b</i>	-	-	-	3363
11	Glenview	Sainfoin	1967 d	662 b	-	-	-	2629
	MEAN		3580	3001	5404	1842	6939	10744
	C.V. (%)		41.2	50.6	17.7	11.1	18.8	-
	PR>F		<0.0001	<0.0001	0.7800	0.3800	0.0540	-
	SE		226.3	244.0	195.2	45.9	266.7	-
	LSD (0.05)		2141	2389	NS	NS	1835	-

Notes:

a Means followed by the same letter codes were not significantly different based on Tukey's test (P=0.05)

b Letter codes not displayed for the means not affected by the treatment (P>0.05)

Perennial Rye, Chicory, and Sainfoindidn't survive this year

A second cut of Kernza was not taken due to poor regrowth

3.5.3 Comparative Performance of Kernza, Perennial Rye, Roundup Ready Alfalfa, Conventional Alfalfa, Sainfoin, and Chicory... Cont'd from previous page

			FRESH MATTER YIELD (kg/ha)									
			2018	2019		2020	•••••	2018 - 2020				
Trt	VARIETIES	CROP	<u>TOTAL^a</u>	<u>TOTAL^a</u>	1st CUT ^b	2nd CUT ^b	TOTAL ^a	<u>TOTAL</u>				
1	Kernza	Perennial Wheatgrass	18894 <i>a</i>	20463 b	16217	-	16217 b	55574				
2	Ace 1	Perennial Rye	13459 bc	8849 c	-	-	-	22308				
4	Choice Chicory	Chicory	5051 d	6601 c	-	-	-	11652				
5	WL319HQ	Roundup Ready Alfalfa	20803 a	25546 a	24783	6583	31367 a	77716				
6	WL354HQ	Roundup Ready Alfalfa	18378 ab	22475 ab	18883	7770	26603 ab	67456				
7	135	Alfalfa	20187 a	23451 ab	23233	6771	30005 a	73643				
8	Instinct	Alfalfa	20974 a	25061 ab	20967	7249	28216 a	74251				
9	Mission HVXRR	Roundup Ready Alfalfa	17606 ab	24538 ab	16183	6679	22862 ab	65006				
10	Mountianview	Sainfoin	9632 cd	7379 c	-	-	-	17011				
11	Glenview	Sainfoin	8612 cd	5057 c	-	-	-	13669				
	MEAN		15360	16942	20044	7010	25878	47829				
	C.V. (%)		37.9	46.6	19.2	11.9	21.5	-				
	PR>F		<0.0001	<0.0001	0.5400	0.7990	0.0140	-				
	SE		1023.5	1084.7	784.6	186.2	1133.5	-				
	LSD (0.05)		8450	12487	5860	NS	7368	-				

Notes:

a Means followed by the same letter codes were not significantly different based on Tukey's test (P=0.05)

b Letter codes not displayed for the means not affected by the treatment (P>0.05)

Perennial Rye, Chicory, and Sainfoindidn't survive this year

A second cut of Kernza was not taken due to poor regrowth

3.5.3 Comparative Performance of Kernza, Perennial Rye, Roundup Ready Alfalfa, Conventional Alfalfa, Sainfoin, and Chicory...Cont'd from previous page Quality Parameters on Dry Matter Basis: First Cut

	CRUDE	SOLUBLE									
	PROTEIN	PROTEIN	ADF-CP	UIP	ADF	NDF	TDN	NEL	NEG	NEM	RFV
VARIETIES	<u>%</u>	<u>% of CP</u>	<u>%</u>	% of CP	<u>%</u>	<u>%</u>	<u>%</u>	<u></u>	.Mcal/kg.	<u></u>	
Kernza	16.4	36.1	0.94	36.5	37.5	45.3	62.9	1.42	0.73	1.30	123
WL319HQ	16.9	36.1	0.98	36.5	37.1	45.2	62.6	1.41	0.74	1.31	124
WL354HQ	17.7	35.9	0.90	36.6	35.2	43.2	64.2	1.45	0.78	1.36	132
135	17.6	36.0	0.98	36.6	34.9	43.7	63.9	1.45	0.79	1.37	131
Instinct	13.8	36.5	0.53	36.3	35.8	55.2	64.2	1.45	0.77	1.35	103
Mission HVXRR	16.7	36.1	0.84	36.5	34.6	42.3	65.5	1.40	0.79	1.37	136
MEAN	16.5	36.1	0.86	36.5	35.8	45.8	63.9	1.43	0.77	1.34	125
	Р	K	S	Ca	Mg	Cl	Cu	Zn	Fe	Mn	Na
VARIETIES	Г <u>%</u>	K <u>%</u>	<u>%</u>	<u>%</u>	<u>%</u>	<u>%</u>					<u>%</u>
VARIETIES	<u>/0</u>	<u>/0</u>	<u>/0</u>	<u>/0</u>	<u>/0</u>	<u>/0</u>	<u>ug/g</u>	<u>ug/g</u>	<u>ug/g</u>	<u>ug/g</u>	<u>/0</u>
Kernza	0.23	2.18	0.13	0.43	0.14	0.50	4.3	16.3	85	28.9	0.04
WL319HQ	0.18	1.66	0.14	1.67	0.31	0.36	9.8	18.6	53	30.7	0.05
WL354HQ	0.22	1.76	0.12	1.99	0.30	0.36	9.1	16.9	51	29.7	0.07
135	0.17	1.60	0.18	2.00	0.36	0.34	9.7	18.1	53	22.2	0.06
Instinct	0.19	1.52	0.12	1.70	0.27	0.37	9.1	17.2	55	24.1	0.08
Mission HVXRR	0.20	1.45	0.13	2.01	0.32	0.34	9.7	17.6	46	27.4	0.07
MEAN	0.20	1.70	0.14	1.63	0.28	0.38	8.6	17.4	57	27.2	0.06

Notes:

UIP = Bypass Protein, ADF = Acid Detergent Fibre, NDF = Neutral Detergent Fibre, TDN = Total Digestible Nutrients,

NE = Net Energy, L = Lactation, M = Maintenance, G = Gain and RFV = Relative Feed Value.

3.5.3 Comparative Performance of Kernza, Perennial Rye, Roundup Ready Alfalfa, Conventional Alfalfa, Sainfoin, and Chicory...Cont'd from previous page Quality Parameters on Dry Matter Basis: Second Cut

	CRUDE	SOLUBLE									
	PROTEIN	PROTEIN	ADF-CP	UIP	ADF	NDF	TDN	NEL	NEG	NEM	RFV
VARIETIES	<u>%</u>	<u>% of CP</u>	<u>%</u>	<u>% of CP</u>	<u>%</u>	<u>%</u>	<u>%</u>	<u></u>	Mcal/kg.	<u></u>	
WL319HQ	18.7	35.9	1.20	36.7	33.7	42.5	65.2	1.48	0.81	1.39	137
WL354HQ	19.4	35.8	1.11	36.7	31.9	41.2	66.4	1.51	0.86	1.45	145
135	19.1	35.9	1.23	36.6	33.7	42.9	64.9	1.47	0.82	1.40	136
Instinct	19.2	35.7	1.29	36.7	33.8	43.7	64.9	1.47	0.81	1.39	133
Mission HVXRR	18.9	35.8	1.12	36.7	32.9	41.8	66.3	1.50	0.84	1.42	141
MEAN	19.1	35.8	1.19	36.7	33.2	42.4	65.5	1.49	0.83	1.41	138
	Р	K	S	Ca	Mg	Cl	Cu	Zn	Fe	Mn	Na
VARIETIES	<u>%</u>	<u>%</u>	<u>%</u>	<u>%</u>	<u>%</u>	<u>%</u>	<u>ug/g</u>	<u>ug/g</u>	<u>ug/g</u>	<u>ug/g</u>	<u>%</u>
WL319HQ	0.24	2.03	0.16	1.78	0.34	0.33	11.0	25.0	97	51.2	0.06
WL354HQ	0.25	2.04	0.15	1.93	0.34	0.32	11.2	25.8	102	45.8	0.08
135	0.28	2.00	0.18	1.95	0.39	0.33	12.3	28.1	191	51.6	0.06
Instinct	0.25	2.20	0.16	1.78	0.33	0.32	10.1	25.1	229	47.7	0.06
Mission HVXRR	0.26	2.08	0.16	1.78	0.33	0.34	10.7	25.2	106	44.9	0.06
MEAN	0.26	2.07	0.16	1.84	0.35	0.33	11.1	25.8	145	48.2	0.06

Notes:

UIP = Bypass Protein, ADF = Acid Detergent Fibre, NDF = Neutral Detergent Fibre, TDN = Total Digestible Nutrients,

NE = Net Energy, L = Lactation, M = Maintenance, G = Gain and RFV = Relative Feed Value.

A second cut of Kernza was not taken do to poor growth

3.5.3 Comparative Performance of Kernza, Perennial Rye, Roundup Ready Alfalfa, Conventional Alfalfa,

Sainfoin, and Chicory...Cont'd from previous page

Quality Parameters on Dry Matter Basis: First Cut 2018 - 2020 Average

	CRUDE	SOLUBLE									
	PROTEIN	PROTEIN	ADF-CP	UIP	ADF	NDF	TDN	NEL	NEG	NEM	RFV
VARIETIES	<u>%</u>	% of CP	<u>%</u>	% of CP	<u>%</u>	<u>%</u>	<u>%</u>	<u></u>	Mcal/kg	·····	
Kernza	14.7	36.0	0.89	34.2	33.7	50.1	75.5	1.49	0.82	1.40	117
Ace 1	16.0	35.9	1.44	33.5	33.7	51.5	65.3	1.48	0.82	1.40	114
Choice Chicory	19.7	34.9	2.24	40.8	35.0	44.6	60.8	1.37	0.79	1.37	130
WL319HQ	18.1	35.8	1.27	34.2	33.5	42.6	64.3	1.45	0.82	1.40	139
WL354HQ	18.7	35.7	1.42	34.7	33.1	44.0	63.7	1.44	0.83	1.41	134
135	18.2	35.8	1.29	34.3	33.0	45.1	62.4	1.41	0.83	1.42	132
Instinct	17.3	35.9	1.14	33.1	33.6	47.9	63.6	1.44	0.82	1.40	124
Mission HVXRF	18.2	35.8	1.17	33.7	31.9	44.2	64.5	1.42	0.86	1.44	135
Mountianview	15.9	35.7	2.74	36.7	34.2	46.0	58.2	1.31	0.81	1.41	126
Glenview	14.7	36.0	1.94	36.8	33.0	45.0	61.8	1.40	0.84	1.42	132
MEAN	17.1	35.8	1.55	35.2	33.5	46.1	64.0	1.42	0.82	1.41	128
	Р	Κ	S	Ca	Mg	Cl	Cu	Zn	Fe	Mn	Na
VARIETIES	<u>%</u>	<u>%</u>	<u>%</u>	<u>%</u>	<u>%</u>	<u>%</u>	<u>ug/g</u>	<u>ug/g</u>	<u>ug/g</u>	<u>ug/g</u>	<u>%</u>
Kernza	0.24	2.39	0.16	0.41	0.14	0.59	6.2	21.6	183	34.1	0.02
Ace 1	0.29	2.67	0.22	0.63	0.24	0.56	8.8	22.6	122	37.4	0.04
Choice Chicory	0.33	2.92	0.34	1.78	0.53	0.13	12.2	28.6	300	50.3	0.64
WL319HQ	0.26	2.14	0.22	1.70	0.32	0.39	11.0	23.6	93	31.6	0.05
WL354HQ	0.29	2.34	0.27	1.99	0.35	0.38	11.5	26.8	116	34.4	0.08
135	0.26	2.20	0.26	1.80	0.33	0.37	10.9	23.4	98	27.2	0.06
Instinct	0.26	2.12	0.24	1.81	0.31	0.37	10.7	28.6	97	30.0	0.08
Mission HVXRF	0.26	2.17	0.22	1.85	0.32	0.40	11.1	22.1	99	29.5	0.08
Mountianview	0.33	2.89	0.28	1.30	0.35	0.28	11.4	45.8	171	44.5	0.03
Glenview	0.30	2.66	0.24	1.11	0.37	0.38	10.0	24.9	244	36.5	0.04
MEAN	0.28	2.45	0.24	1.44	0.33	0.38	10.4	26.8	152	35.6	0.11

UIP = Bypass Protein, ADF = Acid Detergent Fibre, NDF = Neutral Detergent Fibre, TDN = Total Digestible Nutrients,

NE = Net Energy, L = Lactation, M = Maintenance, G = Gain and RFV = Relative Feed Value.

3.5.3 Comparative Performance of Kernza, Perennial Rye, Roundup Ready Alfalfa, Conventional Alfalfa,

Sainfoin, and Chicory...Cont'd from previous page

Quality Parameters on Dry Matter Basis: Second cCut 2018 - 2020 Average

	CRUDE	SOLUBLE									
	PROTEIN	PROTEIN	ADF-CP	UIP	ADF	NDF	TDN	NEL	NEG	NEM	RFV
VARIETIES	<u>%</u>	<u>% of CP</u>	<u>%</u>	<u>% of CP</u>	<u>%</u>	<u>%</u>	<u>%</u>	<u></u>	Mcal/kg	<u></u>	
Kernza	12.9	36.1	0.76	33.7	33.9	56.1	63.3	1.43	0.82	1.40	104
Ace 1	13.8	35.9	1.55	36.4	39.5	36.3	58.8	1.32	0.68	1.25	96
Choice Chicory	-	-	-	-	-	-	-	-	-	-	-
WL319HQ	15.4	35.9	1.25	33.9	37.4	50.4	58.4	1.31	0.72	1.29	116
WL354HQ	19.3	35.7	1.23	35.0	32.3	45.5	62.1	1.40	0.85	1.44	131
135	18.8	35.5	1.20	36.1	33.0	45.7	62.0	1.40	0.83	1.42	130
Instinct	18.7	35.7	1.38	34.9	33.6	46.3	61.7	1.39	0.82	1.40	126
Mission HVXRF	20.0	35.6	1.40	35.2	31.4	44.2	63.5	1.43	0.87	1.45	136
Mountianview	17.2	35.4	1.28	36.1	32.4	45.0	62.8	1.42	0.85	1.43	132
Glenview	16.3	35.9	1.49	35.7	31.8	43.9	62.7	1.42	0.86	1.45	136
MEAN	16.9	35.7	1.28	35.2	33.9	45.9	61.7	1.39	0.81	1.39	123
	Р	Κ	S	Ca	Mg	Cl	Cu	Zn	Fe	Mn	Na
VARIETIES	<u>%</u>	<u>%</u>	<u>%</u>	<u>%</u>	<u>%</u>	<u>%</u>	<u>ug/g</u>	<u>ug/g</u>	<u>ug/g</u>	<u>ug/g</u>	<u>%</u>
Kernza	0.25	2.26	0.18	0.83	0.25	0.63	6.2	17.9	196	65.0	0.05
Ace 1	0.28	2.81	0.23	0.94	0.38	0.50	8.5	30.2	150	69.8	0.11
Choice Chicory	-	-	-	-	-	-	-	-	-	-	-
WL319HQ	0.26	1.97	0.23	1.78	0.36	0.34	10.8	23.0	102	41.0	0.10
WL354HQ	0.27	2.13	0.25	1.90	0.38	0.38	11.8	24.5	107	41.0	0.11
135	0.30	2.11	0.27	1.93	0.38	0.35	12.5	30.0	152	41.9	0.08
Instinct	0.29	2.41	0.27	1.83	0.36	0.40	12.1	25.6	181	43.5	0.09
Mission HVXRF	0.29	2.27	0.30	2.01	0.38	0.34	12.7	28.9	144	46.5	0.10
Mountianview	0.29	2.40	0.27	1.63	0.40	0.34	12.0	31.1	125	54.9	0.09
Glenview	0.29	2.40	0.29	1.87	0.45	0.25	11.1	31.2	258	62.4	0.12
MEAN	0.28	2.31	0.25	1.64	0.37	0.39	10.9	26.9	157	51.8	0.09

UIP = Bypass Protein, ADF = Acid Detergent Fibre, NDF = Neutral Detergent Fibre, TDN = Total Digestible Nutrients,

NE = Net Energy, L = Lactation, M = Maintenance, G = Gain and RFV = Relative Feed Value.

4. Fertilizer Management Practices

Cereals

4.1.1 Nitrogen and Sulphur Management for Malting Barley Production

PLANTING DATE:	May 13, 2020
FERTILIZERS:	N and S as per treatments
	20 kg P ₂ O ₅ /ha (45 kg/ha 0-45-0)
	20 kg K ₂ O/ha (33kg/ha 0-0-60)
HERBICIDE:	Logic M @ 1.25L/ha applied post - emergent; June 1, 2020;
HARVEST DATE:	August 14, 2020
VARIETY	CDC Bow
PREVIOUS CROP:	Spring wheat
	YIELD

				\dots I IELD		
FACTOR A X B		GRAIN kg/kg	GRAIN ^a	STRAW ^b	BIOMASS ^a	HARVEST
MAIN PLOT	SUB PLOT	<u>NUTRIENTS \clubsuit ^{<i>a</i>}</u>	<u></u>	(MT/ha))	<u>INDEX (%)</u> ^b
1. Check (Zero N)	Zero S	45.8 <i>a</i>	1.83 <i>a</i>	1.18	3.01 abc	60.5
2. Urea @ 35 kg N/ha	Zero S	37.1 <i>ab</i>	2.78 a	0.73	3.52 abc	75.6
3. Urea @ 70 kg N/ha	Zero S	25.1 ab	2.76 a	0.77	3.53 abc	69.7
4. Urea @ 105 kg N/ha	Zero S	19.6 ab	2.84 a	2.14	4.97 abc	57.3
5. Urea + ESN @ 35 kg N/ha♦	Zero S	36.8 ab	2.76 a	1.27	4.03 abc	64.2
6. Urea + ESN @ 70 kg N/ha♦	Zero S	21.8 ab	2.40 a	2.33	4.73 abc	50.5
7. Urea + ESN @ 105 kg N/ha♦	Zero S	20.9 ab	3.03 a	2.68	5.71 a	52.6
8. Check (Zero N)	8 kg S/ha	25.4 <i>ab</i>	1.22 <i>a</i>	1.31	2.53 c	50.2
9. Urea @ 35 kg N/ha	8 kg S/ha	20.3 ab	1.68 a	1.81	3.49 abc	49.3
10. Urea @ 70 kg N/ha	8 kg S/ha	21.3 <i>ab</i>	2.51 a	2.58	5.09 abc	48.6
11. Urea @ 105 kg N/ha	8 kg S/ha	16.5 <i>ab</i>	2.52 a	1.68	4.20 abc	60.6
12. Urea + ESN @ 35 kg N/ha♦	8 kg S/ha	22.5 ab	1.87 a	1.67	3.54 <i>abc</i>	53.3
13. Urea + ESN @ 70 kg N/ha♦	8 kg S/ha	13.9 <i>ab</i>	2.82 a	2.13	4.95 abc	57.5
14. Urea + ESN @ 105 kg N/ha♦	8 kg S/ha	12.3 <i>b</i>	1.88 a	2.30	4.18 abc	47.4
15. Check (Zero N)	16 kg S/ha	23.3 <i>ab</i>	1.31 a	1.33	2.63 bc	48.1
16. Urea @ 35 kg N/ha	16 kg S/ha	15.7 <i>ab</i>	1.43 a	1.96	3.39 abc	39.6
17. Urea @ 70 kg N/ha	16 kg S/ha	20.9 ab	2.64 a	1.94	4.58 abc	57.5
18. Urea @ 105 kg N/ha	16 kg S/ha	17.2 <i>ab</i>	2.78 a	2.51	5.29 ab	51.6
19. Urea + ESN @ 35 kg N/ha♦	16 kg S/ha	21.3 <i>ab</i>	1.94 <i>a</i>	1.90	3.84 abc	50.5
20. Urea + ESN @ 70 kg N/ha♦	16 kg S/ha	21.1 <i>ab</i>	2.66 a	2.03	4.68 abc	56.7
21. Urea + ESN @ 105 kg N/ha♦	16 kg S/ha	15.5 <i>ab</i>	2.44 <i>a</i>	1.90	4.34 abc	56.5
MEAN		22.6	2.29	1.82	4.11	55.1
C.V. (%)		59.2	47.4	51.6	30.3	34.9
PR>F - A		0.0350	0.0365	0.0560	0.0007	0.9939
PR>F - B		0.0022	0.0926	0.3420	0.6280	0.1211
PR>F - (A x B)		0.6777	0.9445	0.3430	0.5060	0.7228
SE - (A x B)		1.47	0.12	0.10	0.14	2.10
LSD (0.05)		15.6	1.42	NS	1.39	NS

Notes:

♣Indicates nutrients utilization efficiency

♦ Blend of Urea and ESN 3:1 on N basis

Sulphur was supplied through gypsum

Pre seeding soil analysis 0-30 cm (ppm): Ammoniacal N: 6, Nitrate N: 8.75, Total N: 14.75, and S: 5.75

a Means followed by the same letter codes were not significantly different based on Tukey's test (P=0.05)

4.1.1 Nitrogen and Sulphur Management for Malting Barley Production...Cont'd from Previous page

	-	1000 K		DAYS TO	LODGING ▼	HEIGHT ^b	PLANT ^b	TILLE	RS/ ^b
MAIN PLOT	SUB PLOT	<u>WT.(g)</u>	<u>(kg/hl)</u>	MATURE	<u>(0-9)</u>	<u>(cm)</u>	<u>(m²)</u>	<u>(m²)</u>	PLANT
1. Check (Zero N)	Zero S	51	60	83	0	45	217	500	2.4
2. Urea @ 35 kg N/ha	Zero S	48	60	83	0	43	203	427	2.2
3. Urea @ 70 kg N/ha	Zero S	47	61	83	0	44	277	477	2.5
4. Urea @ 105 kg N/ha	Zero S	52	62	83	0	48	180	420	2.3
5. Urea + ESN @ 35 kg N/ha	Zero S	50	61	83	0	43	177	490	3.3
6. Urea + ESN @ 70 kg N/ha	Zero S	49	60	83	0	46	177	500	3.1
7. Urea + ESN @ 105 kg N/ha	Zero S	53	62	83	0	44	243	587	2.6
8. Check (Zero N)	8 kg S/ha	53	62	83	0	44	217	397	2.0
9. Urea @ 35 kg N/ha	8 kg S/ha	52	61	83	0	44	160	427	2.7
10. Urea @ 70 kg N/ha	8 kg S/ha	52	61	83	0	45	233	433	2.2
11. Urea @ 105 kg N/ha	8 kg S/ha	51	62	83	0	45	183	493	2.9
12. Urea + ESN @ 35 kg N/ha	8 kg S/ha	47	61	83	0	45	213	457	2.3
13. Urea + ESN @ 70 kg N/ha	8 kg S/ha	52	62	83	0	45	180	527	2.8
14. Urea + ESN @ 105 kg N/ha	8 kg S/ha	51	61	83	0	44	183	620	3.7
15. Check (Zero N)	16 kg S/ha	53	60	83	0	43	170	493	3.0
16. Urea @ 35 kg N/ha	16 kg S/ha	52	60	83	0	44	190	363	2.0
17. Urea @ 70 kg N/ha	16 kg S/ha	52	62	83	0	42	193	443	2.4
18. Urea @ 105 kg N/ha	16 kg S/ha	51	62	83	0	45	230	460	2.6
19. Urea + ESN @ 35 kg N/ha	16 kg S/ha	51	61	83	0	46	193	437	2.2
20. Urea + ESN @ 70 kg N/ha	16 kg S/ha	53	62	83	0	46	170	367	2.2
21. Urea + ESN @ 105 kg N/ha	16 kg S/ha	50	61	83	0	44	183	477	3
MEAN		51	61	83	0	44	199	466	2.6
C.V. (%)		-	-	-	-	7.8	32.6	27.4	39.2
PR>F - A		-	-	-	-	0.3066	0.3066	0.1550	0.5224
PR>F - B		-	-	-	-	0.7673	0.7673	0.2620	0.8072
PR>F - (A x B)		-	-	-	-	0.7684	0.7684	0.8210	0.5127
SE - (A x B)		-	-	-	-	0.4	7.1	14.0	0.11
LSD (0.05)		-	-	-	-	NS	NS	NS	NS

Notes:

▼ Lodging is rated on the scale 0-9, where 0 = standing and 9 = flat.

a Means followed by the same letter codes were not significantly different based on Tukey's test (P=0.05)

b Letter codes not displayed for the means not affected by the treatment (P>0.05)

68

4.1.1 Nitrogen and Sulphur Management for Malting Barley Production... Cont'd from Previous page

	YIELD									
	GRAIN \clubsuit^a	GRAIN ^a	STRAW ^b	BIOMASS ^a	<u>HARVEST</u>					
FACTOR A	<u>kg/kg NUTRIENTS</u>	<u></u>	(MT/ha)	<u></u>	<u>INDEX (%)</u> ^b					
1. Check (Zero N)	31.5 <i>a</i>	1.45 <i>b</i>	1.27	2.73 c	52.9					
2. Urea @ 35 kg N/ha	24.4 <i>ab</i>	1.97 <i>ab</i>	1.50	3.46 bc	54.9					
3. Urea @ 70 kg N/ha	20.3 <i>ab</i>	2.62 ab	1.86	4.48 ab	57.6					
4. Urea @ 105 kg N/ha	17.8 <i>ab</i>	2.71 <i>a</i>	2.11	4.82 <i>a</i>	56.5					
5. Urea + ESN @ 35 kg N/ha	26.9 <i>ab</i>	2.19 ab	1.61	3.80 abc	56.0					
6. Urea + ESN @ 70 kg N/ha	22.3 <i>ab</i>	2.63 ab	2.16	4.79 <i>a</i>	54.9					
7. Urea + ESN @ 105 kg N/ha	16.1 <i>b</i>	2.45 ab	2.29	4.74 <i>a</i>	52.2					
PR>F - A	0.0215	0.0267	0.0592	0.0002	0.9935					
SE - (A)	2.02	0.172	0.144	0.306	0.73					
LSD (0.05)	9.93	0.795	NS	0.833	NS					
			YIELD							
	GRAIN \clubsuit^a	GRAIN b	STRAW ^b	BIOMASS ^b	HARVEST					
FACTOR B	kg/kg NUTRIENTS	<u></u>	. <u>(MT/ha)</u>	<u></u>	<u>INDEX (%)</u> ^b					
1. Zero S	29.7 a	2.62	1.62	4.24	61.2					
2. 8 kg S/ha	20.3 <i>b</i>	2.07	1.92	3.99	52.4					
3. 16 kg S/ha	19.3 <i>b</i>	2.17	1.94	4.11	51.5					
PR>F - B	0.0029	0.1108	0.3650	0.7710	0.0958					
SE - (B)	3.31	0.169	0.103	0.072	3.09					
LSD (0.05)	6.61	NS	NS	0.072 NS	3.09 NS					
LSD(0.03)	0.01			TID	IND					

Notes:

♣Indicates nutrients utilization efficiency

a Means followed by the same letter codes were not significantly different based on Tukey's test (P=0.05)

4.1.1 Nitrogen and Sulphur Management for Malting Barley Production...

Cont'd from Previous page

	1000 K	TEST WT.	HEIGHT ^b	PLANT b	TILLI	ERS ^b
FACTOR A	<u>WT.(g)</u>	<u>(kg/hl)</u>	<u>(cm)</u>	(m^2)	<u>(m²)</u>	<u>PLANT</u>
$1 - C_{1} + L_{2} - (7 - m_{2} - N_{1})$	40	(0	4.4	201	462	2.5
1. Check (Zero N)	49	60	44	201	463	2.5
2. Urea @ 35 kg N/ha	50	61	43	184	406	2.3
3. Urea @ 70 kg N/ha	53	62	44	234	451	2.3
4. Urea @ 105 kg N/ha	50	61	46	198	458	2.6
5. Urea + ESN @ 35 kg N/ha	52	61	45	194	461	2.6
6. Urea + ESN @ 70 kg N/ha	52	61	46	176	464	2.7
7. Urea + ESN @ 105 kg N/ha	51	61	44	203	561	3.1
PR>F - A	_	_	0.2590	0.3349	0.1290	0.5206
SE - (A)	_	_	0.2590	7.0	17.6	0.5200
	-	-	NS	NS	NS	0.10 NS
LSD (0.05)	-	-	IND	IN S	INS	INS
			h	1		L
	1000 K	TEST WT.	HEIGHT ^b	$PLANT^{b}$	TILLE	ERS ^{<i>b</i>}
FACTOR B	<u>WT.(g)</u>	<u>(kg/hl)</u>	<u>(cm)</u>	<u>(m²)</u>	(m^2)	<u>PLANT</u>
1. Zero S	52	61	45	210	486	2.6
2. 8 kg S/ha	51	61	44	196	479	2.7
3. 16 kg S/ha	50	61	44	190	434	2.5
PR>F - B	-	-	0.7600	0.4237	0.2570	0.7965
SE - (B)	-	-	0.3	5.9	16.3	0.06
LSD (0.05)	-	-	NS	NS	NS	NS

Notes:

a Means followed by the same letter codes were not significantly different based on Tukey's test (P=0.05)

4.1.1 Nitrogen and Sulphur Management for Malting Barley Production...Cont'd from Previous page Grain Malting Quality Analysis 2020

FACTOR A X B.		MOISTURE	EXT FINE	EXT COARSE		ASBC	DP	AA	TOTAL PROTEIN	S/T RATIO	WART PROTEIN		WORT VISCOSITY	BG	TURBIDITY	FAN
MAIN PLOT	SUB PLOT	<u>(%)</u>	<u>(%)</u>	<u>(%)</u>	<u>F/C</u>	COLOUR	<u>(U/ml)</u>	<u>(U/ml)</u>	<u>(%)</u>	<u>(%)</u>	<u>(%)</u>	<u>pH</u>	<u>(Cp)</u>	<u>(mg/L)</u>	<u>(NTU)</u>	<u>(mg/L)</u>
1. Check (Zero N)	Zero S	5.1	81.0	79.5	1.4	2.48	98	43.7	10.95	46.0	5.03	5.77	1.56	195	19.2	238
2. Urea @ 35 kg N/ha	Zero S	5.6	79.6	77.8	1.8	2.76	100	41.5	12.57	40.7	5.12	5.72	1.55	288	22.8	249
3. Urea @ 70 kg N/ha	Zero S	5.7	79.8	78.3	1.5	2.50	127	50.3	12.93	42.3	5.48	5.77	1.52	200	18.6	274
4. Urea @ 105 kg N/ha	Zero S	5.0	79.0	77.1	1.9	1.84	114	44.8	13.46	37.2	5.01	5.80	1.54	355	10.1	199
5. Urea + ESN @ 35 kg N/ha	Zero S	5.9	79.2	77.5	1.8	2.44	117	41.1	12.67	41.4	5.24	5.69	1.56	285	25.1	261
6. Urea + ESN @ 70 kg N/ha	Zero S	4.8	79.5	77.7	1.8	2.06	107	45.5	13.02	39.7	5.17	5.86	1.53	320	9.9	203
7. Urea + ESN @ 105 kg N/ha	Zero S	4.9	79.6	77.6	1.9	2.41	92	39.6	13.04	39.8	5.19	5.75	1.54	347	12.2	202
8. Check (Zero N)	8 kg S/ha	5.0	82.1	80.6	1.5	2.40	94	44.6	10.54	46.7	4.92	5.82	1.56	225	16.6	236
9. Urea @ 35 kg N/ha	8 kg S/ha	5.9	80.4	78.9	1.4	2.22	115	44.4	11.68	43.7	5.10	5.70	1.53	184	22.1	262
10. Urea @ 70 kg N/ha	8 kg S/ha	4.5	79.7	77.6	2.1	2.24	101	46.2	12.92	39.8	5.14	5.85	1.53	426	10.8	209
11. Urea @ 105 kg N/ha	8 kg S/ha	5.0	79.1	77.0	2.1	1.70	122	48.3	13.29	36.8	4.90	5.95	1.53	399	7.7	193
12. Urea + ESN @ 35 kg N/ha	8 kg S/ha	5.7	79.2	77.6	1.6	2.55	126	48.0	12.77	43.2	5.52	5.71	1.54	219	19.8	269
13. Urea + ESN @ 70 kg N/ha	8 kg S/ha	4.8	79.7	78.0	1.7	1.96	107	43.7	12.30	41.6	5.12	5.84	1.51	265	10.3	209
14. Urea + ESN @ 105 kg N/ha	8 kg S/ha	5.0	78.8	77.0	1.8	2.52	96	39.4	13.04	40.3	5.25	5.70	1.53	293	14.6	214
15. Check (Zero N)	16 kg S/ha	5.4	80.5	78.9	1.5	2.46	93	41.4	11.15	44.3	4.94	5.79	1.56	217	21.0	232
16. Urea @ 35 kg N/ha	16 kg S/ha	5.4	79.7	78.2	1.5	2.69	107	40.7	12.11	44.5	5.39	5.73	1.54	210	24.9	260
17. Urea @ 70 kg N/ha	16 kg S/ha	4.7	79.2	77.4	1.8	2.25	108	45.5	12.94	39.7	5.13	5.83	1.54	327	12.3	204
18. Urea @ 105 kg N/ha	16 kg S/ha	4.9	78.9	76.9	2.0	2.40	97	40.0	13.23	39.1	5.17	5.74	1.54	385	11.4	203
19. Urea + ESN @ 35 kg N/ha	16 kg S/ha	5.5	79.5	78.0	1.5	2.87	114	45.3	12.76	43.5	5.55	5.72	1.52	195	22.3	268
20. Urea + ESN @ 70 kg N/ha	16 kg S/ha	5.2	79.3	77.5	1.9	1.92	116	42.7	12.90	39.4	5.09	5.78	1.53	326	10.4	205
21. Urea + ESN @ 105 kg N/ha	16 kg S/ha	5.1	80.0	78.2	1.7	2.25	104	41.4	13.50	39.2	5.30	5.70	1.53	278	13.9	215
MEAN		5.2	79. 7	78.0	1.7	2.33	107	43.7	12.56	41.4	5.18	5.77	1.54	283	16.0	229

4.1.1 Nitrogen and Sulphur Management for Malting Barley Production...Cont'd from Previous page Grain Malting Quality Analysis 2020

FACTOR A	MOISTURE (%)	EXT FINE <u>(%)</u>	EXT COARSE <u>(%)</u>	F/C	ASBC COLOUR	DP (U/ml)	AA (U/ml)	TOTAL PROTEIN <u>(%)</u>	S/T RATIO <u>(%)</u>	WART PROTEIN <u>(%)</u>	<u>pH</u>	WORT VISCOSITY <u>(Cp)</u>	BG <u>(mg/L)</u>	TURBIDITY <u>(NTU)</u>	FAN <u>(mg/L)</u>
merekn	<u>(70)</u>	<u>(70)</u>	<u>, , , , ,</u>	<u>1/C</u>		<u>(o/m/</u>	<u>(o/m/</u>	<u>(70)</u>	<u>, voj</u>	<u>(70)</u>	<u>1711</u>	<u>(ch)</u>	<u>(mg/ 12)</u>	<u>(110)</u>	<u>(IIIg/12)</u>
1. Check (Zero N)	5.2	81.2	79.7	1.5	2.45	95	43.2	10.88	45.7	4.96	5.79	1.56	212	18.9	235
2. Urea @ 35 kg N/ha	5.6	79.9	78.3	1.6	2.56	107	42.2	12.12	43.0	5.20	5.72	1.54	227	23.3	257
3. Urea @ 70 kg N/ha	5.0	79.6	77.8	1.8	2.33	112	47.3	12.93	40.6	5.25	5.82	1.53	318	13.9	229
4. Urea @ 105 kg N/ha	5.0	79.0	77.0	2.0	1.98	111	44.4	13.33	37.7	5.03	5.83	1.54	380	9.7	198
5. Urea + ESN @ 35 kg N/ha	5.7	79.3	77.7	1.6	2.62	119	44.8	12.73	42.7	5.44	5.71	1.54	233	22.4	266
6. Urea + ESN @ 70 kg N/ha	4.9	79.5	77.7	1.8	1.98	110	44.0	12.74	40.2	5.13	5.83	1.52	304	10.2	206
7. Urea + ESN @ 105 kg N/ha	5.0	79.5	77.6	1.8	2.39	97	40.1	13.19	39.8	5.25	5.72	1.53	306	13.6	210
MEAN	5.2	79. 7	78.0	1.7	2.33	107	43.7	12.56	41.4	5.18	5.77	1.54	283	16.0	229

FACTOR B	MOISTURE <u>(%)</u>	EXT FINE <u>(%)</u>	EXT COARSE <u>(%)</u>	<u>F/C</u>	ASBC <u>COLOUR</u>	DP <u>(U/ml)</u>	AA <u>(U/ml)</u>	TOTAL PROTEIN <u>(%)</u>	S/T RATIO <u>(%)</u>	WART PROTEIN <u>(%)</u>	<u>pH</u>	WORT VISCOSITY <u>(Cp)</u>	BG <u>(mg/L)</u>	TURBIDITY <u>(NTU)</u>	FAN <u>(mg/L)</u>
1. Zero S	5.3	79.7	77.9	1.7	2.36	108	43.8	12.66	41.0	5.18	5.77	1.54	284	16.8	232
2. 8 kg S/ha	5.1	79.9	78.1	1.7	2.23	109	44.9	12.36	41.7	5.14	5.80	1.53	287	14.6	227
3. 16 kg S/ha	5.2	79.6	77.9	1.7	2.41	106	42.4	12.66	41.4	5.22	5.76	1.54	277	16.6	227
MEAN	5.2	79. 7	78.0	1.7	2.33	107	43.7	12.56	41.4	5.18	5.77	1.54	283	16.0	229

4.1.1 Nitrogen and Sulphur Management for Malting Barley Production

Cont'd from Previous page

Average Over 2018-2020

			YIELD					
FACTOR A X B		GRAIN kg/kg	GRAIN ^a	STRAW ^a	BIOMASS ^a	HARVEST	1000 K	TEST WT.
MAIN PLOT	SUB PLOT	<u>NUTRIENTS \bigstar ^{<i>a</i>}</u>	<u></u>	(MT/ha)	<u></u>	<u>INDEX (%)</u> ^b	WT.(g)	<u>(kg/hl)</u>
1. Check (Zero N)	Zero S	46.1 <i>a</i>	3.18 a	2.95 a	6.13 a	53.3	52	60
2. Urea @ 35 kg N/ha	Zero S	42.1 <i>a</i>	4.47 a	3.79 a	8.25 <i>a</i>	58.4	54	62
3. Urea @ 70 kg N/ha	Zero S	34.5 <i>a</i>	5.01 a	4.59 a	9.60 a	54.7	57	62
4. Urea @ 105 kg N/ha	Zero S	27.5 a	4.93 a	4.77 a	9.70 a	52.0	55	62
5. Urea + ESN @ 35 kg N/ha♦	Zero S	42.7 <i>a</i>	4.54 a	4.03 a	8.57 <i>a</i>	54.5	53	61
6. Urea + ESN @ 70 kg N/ha♦	Zero S	33.7 <i>a</i>	4.88 a	4.92 <i>a</i>	9.80 a	49.9	56	62
7. Urea + ESN @ 105 kg N/ha♦	Zero S	30.7 <i>a</i>	5.51 a	5.56 a	11.06 <i>a</i>	50.5	56	62
8. Check (Zero N)	8 kg S/ha	38.5 a	2.97 a	4.00 a	6.98 a	44.9	53	61
9. Urea @ 35 kg N/ha	8 kg S/ha	36.9 <i>a</i>	4.25 a	4.24 <i>a</i>	8.49 <i>a</i>	49.9	54	62
10. Urea @ 70 kg N/ha	8 kg S/ha	34.6 <i>a</i>	5.18 a	5.28 a	10.46 a	49.2	54	63
11. Urea @ 105 kg N/ha	8 kg S/ha	26.1 <i>a</i>	4.83 a	4.84 <i>a</i>	9.67 a	52.3	56	63
12. Urea + ESN @ 35 kg N/ha♦	8 kg S/ha	36.2 <i>a</i>	4.13 a	4.00 a	8.12 <i>a</i>	51.2	53	61
13. Urea + ESN @ 70 kg N/ha♦	8 kg S/ha	34.4 <i>a</i>	5.10 a	4.84 <i>a</i>	9.94 a	52.7	56	63
14. Urea + ESN @ 105 kg N/ha♦	8 kg S/ha	27.0 <i>a</i>	5.04 a	5.24 a	10.28 a	49.1	56	62
15. Check (Zero N)	16 kg S/ha	34.3 <i>a</i>	2.73 a	2.91 a	5.64 a	47.2	51	60
16. Urea @ 35 kg N/ha	16 kg S/ha	36.3 <i>a</i>	4.34 a	4.75 a	9.08 a	45.5	53	61
17. Urea @ 70 kg N/ha	16 kg S/ha	33.1 <i>a</i>	5.07 a	4.29 <i>a</i>	9.36 a	56.8	55	63
18. Urea @ 105 kg N/ha	16 kg S/ha	28.0 a	5.31 a	5.08 a	10.39 a	51.2	56	63
19. Urea + ESN @ 35 kg N/ha♦	16 kg S/ha	36.2 <i>a</i>	4.27 a	4.43 <i>a</i>	8.70 <i>a</i>	49.3	54	61
20. Urea + ESN @ 70 kg N/ha♦	16 kg S/ha	33.4 <i>a</i>	5.14 a	4.90 a	10.04 <i>a</i>	52.4	56	62
21. Urea + ESN @ 105 kg N/ha♦	16 kg S/ha	27.3 <i>a</i>	5.20 a	5.11 a	10.31 a	51.9	56	63
MEAN							55	62
C.V. (%)		42.4	45.1	50.3	44.4	25.3	-	-
PR>F - A		0.0002	0.0001	0.0059	0.0001	0.8040	-	-
PR>F - B		0.1290	0.8930	0.7597	0.9830	0.1970	-	-
$PR > F - (A \times B)$		0.9839	1.0000	0.9781	0.9990	0.6660	-	-
SE - (A x B)		0.92	0.13	0.14	0.25	0.82	-	-
LSD (0.05)		10.76	1.54	1.74	3.04	NS	-	-

VIELD

Notes:

♣Indicates nutrients utilization efficiency

♦ Blend of Urea and ESN 3:1 on N basis

Sulphur was supplied through gypsum

a Means followed by the same letter codes were not significantly different based on Tukey's test (P=0.05)

4.1.1 Nitrogen and Sulphur Management for Malting Barley Production

Cont'd from Previous page

Average Over 2018-2020

FACTOR A X B		DAYS TO	LODGING ▼	HEIGHT b	PLANT b	TILL	ERS
MAIN PLOT	SUB PLOT	MATURE	<u>(0-9)</u>	<u>(cm)</u>	(m^2)	$(m^2)^{a}$	PLANT b
1. Check (Zero N)	Zero S	94	0	62	298	572 a	2.1
2. Urea @ 35 kg N/ha	Zero S	94	0	68	311	578 a	2.0
3. Urea @ 70 kg N/ha	Zero S	95	0	74	356	693 a	2.1
4. Urea @ 105 kg N/ha	Zero S	94	0	74	336	638 a	2.0
5. Urea + ESN @ 35 kg N/ha♦	Zero S	94	0	67	296	634 <i>a</i>	2.4
6. Urea + ESN @ 70 kg N/ha♦	Zero S	94	0	72	310	677 a	2.5
7. Urea + ESN @ 105 kg N/ha♦	Zero S	94	0	73	326	702 a	2.3
8. Check (Zero N)	8 kg S/ha	94	0	61	317	498 a	1.8
9. Urea @ 35 kg N/ha	8 kg S/ha	94	0	69	317	610 <i>a</i>	2.1
10. Urea @ 70 kg N/ha	8 kg S/ha	94	0	71	332	634 <i>a</i>	2.1
11. Urea @ 105 kg N/ha	8 kg S/ha	94	0	75	292	689 a	2.6
12. Urea + ESN @ 35 kg N/ha♦	8 kg S/ha	94	0	68	304	639 <i>a</i>	2.2
13. Urea + ESN @ 70 kg N/ha♦	8 kg S/ha	94	0	71	296	680 <i>a</i>	2.4
14. Urea + ESN @ 105 kg N/ha♦	8 kg S/ha	94	0	72	330	708 a	2.5
15. Check (Zero N)	16 kg S/ha	94	0	61	304	600 a	2.3
16. Urea @ 35 kg N/ha	16 kg S/ha	94	0	68	279	569 a	2.1
17. Urea @ 70 kg N/ha	16 kg S/ha	94	0	72	324	630 <i>a</i>	2.1
18. Urea @ 105 kg N/ha	16 kg S/ha	94	0	74	313	680 <i>a</i>	2.4
19. Urea + ESN @ 35 kg N/ha♦	16 kg S/ha	94	0	68	322	637 a	2.1
20. Urea + ESN @ 70 kg N/ha♦	16 kg S/ha	94	0	72	284	652 a	2.4
21. Urea + ESN @ 105 kg N/ha♦	16 kg S/ha	94	0	71	296	632 <i>a</i>	2.4
MEAN		94					
C.V. (%)		-	-	27.2	38.7	28.1	34.8
PR>F - A		-	-	0.0941	0.8790	0.0224	0.1420
PR>F - B		-	-	0.9868	0.7230	0.8904	0.9331
PR>F - (A x B)		-	-	1.0000	0.9980	0.9479	0.7999
SE - (A x B)		-	-	1.2	7.6	11.3	0.05
LSD (0.05)		-	-	NS	NS	137.4	NS

Notes:

♣Indicates nutrients utilization efficiency

♦ Blend of Urea and ESN 3:1 on N basis

Sulphur was supplied through gypsum

a Means followed by the same letter codes were not significantly different based on Tukey's test (P=0.05)

4.1.1 Nitrogen and Sulphur Management for Malting Barley Production...

Cont'd from Previous page

Average Over 2018-2020

			YIELD								
	GRAIN kg/kg	GRAIN ^a	STRAW ^b	BIOMASS ^a	HARVEST	1000 K	TEST WT.	HEIGHT b	PLANT b	TILLI	ERS
FACTOR A	<u>NUTRIENTS \clubsuit^a</u>	<u></u>	(MT/ha)	<u></u>	<u>INDEX (%)</u> ^b	WT.(g)	<u>(kg/hl)</u>	<u>(cm)</u>	<u>(m²)</u>	<u>(m²)</u>	PLANT
1. Check (Zero N)	39.6 a	2.96 b	3.29 b	6.25 b	48.5	52	60	61	306	557 b	2.1
2. Urea @ 35 kg N/ha	38.4 <i>a</i>	4.35 <i>a</i>	4.26 ab	8.61 ab	51.2	54	61	68	302	586 ab	2.1
3. Urea @ 70 kg N/ha	34.1 <i>ab</i>	5.09 a	4.72 ab	9.81 a	53.6	55	63	72	337	651 ab	2.1
4. Urea @ 105 kg N/ha	27.2 b	5.02 <i>a</i>	4.90 a	9.92 a	51.8	56	62	74	314	669 <i>ab</i>	2.3
5. Urea + ESN @ 35 kg N/ha	38.4 <i>a</i>	4.31 ab	4.15 ab	8.46 ab	51.7	54	61	67	307	637 <i>ab</i>	2.2
6. Urea + ESN @ 70 kg N/ha	33.8 <i>ab</i>	5.04 <i>a</i>	4.89 a	9.93 a	51.7	56	62	72	297	670 <i>ab</i>	2.4
7. Urea + ESN @ 105 kg N/ha	28.3 <i>b</i>	5.25 a	5.30 a	10.55 a	50.5	56	62	72	317	681 <i>a</i>	2.4
PR>F - A	0.0002	0.0001	0.0044	0.0001	0.7999	-	-	0.0755	0.8680	0.0182	0.1316
SE - (A)	1.88	0.30	0.25	0.55	0.58	-	-	1.65	4.98	17.79	0.06
LSD (0.05)	6.42	0.91	1.03	1.79	NS	-	-	NS	NS	81.5	NS
			YIELD								
	GRAIN kg/kg	GRAIN b	STRAW ^b	BIOMASS ^b	HARVEST	1000 K	TEST WT.	HEIGHT b	PLANT b	TILLI	ERS
FACTOR B	<u>NUTRIENTS \bigstar^{b}</u>	<u></u>	(MT/ha)	<u></u>	<u>INDEX (%)</u> ^b	<u>WT.(g)</u>	<u>(kg/hl)</u>	<u>(cm)</u>	<u>(m²)</u>	<u>(m²)</u>	<u>PLANT</u>
1. Zero S	36.7	4.64	4.37	9.01	53.3	55	62	70	318	641	2.2
2. 8 kg S/ha	33.4	4.50	4.63	9.13	49.9	54	62	69	313	637	2.2
3. 16 kg S/ha	32.7	4.58	4.50	9.07	50.6	54	62	69	303	629	2.3
PR>F - B	0.1460	0.9110	0.7540	0.9800	0.1936	-	-	0.9890	0.7200	0.8950	0.9403
SE - (B)	1.23	0.04	0.08	0.03	1.04	-	-	0.13	4.38	3.8	0.01
LSD (0.05)	NS	NS	NS	NS	NS	-	-	NS	NS	NS	NS

Notes:

♣Indicates nutrients utilization efficiency

a Means followed by the same letter codes were not significantly different based on Tukey's test (P=0.05)

4.1.2 Evaluation of Fish Waste as a Source of N for Spring Wheat Production

PLANTING DATE: June 3, 2020

FERTILIZERS: N as per treatments, 20 kg P_2O_5 /ha (45 kg/ha 0-45-0), 20 kg K_2O /ha (34 kg/ha 0-0-60)

HERBICIDE: Roundup @ 3 L/ha applied pre - emergent; June 5, 2020

HARVEST DATE: September 9, 2020

PREVIOUS CROP: Spring Wheat

	YIELD								
	GRAIN \bigstar^a	GRAIN ^b	STRAW ^b	BIOMASS ^b	HARVEST b	1000 K			
TREATMENTS	<u>kg/kg NUTRIENTS</u>	<u></u>	(MT/ha)	<u></u>	<u>INDEX (%)</u>	<u>WT.(g)</u>			
1. Urea + ESN @ 0 kg N/ha♦	29.7 a	1.19	1.80	2.98	39.7	38			
2. Urea + ESN @ 40 kg N/ha♦	15.7 bc	1.26	2.07	3.33	37.7	35			
3. Urea + ESN @ 80 kg N/ha♦	13.3 bc	1.59	2.05	3.64	43.5	37			
4. Urea + ESN @ 120 kg N/ha♦	$7.0 \ c$	1.11	1.74	2.86	38.4	36			
5. Fish Waste @ 0 kg N/ha	22.2 ab	0.89	1.48	2.37	36.3	38			
6. Fish Waste @ 40 kg N/ha	9.8 bc	0.79	1.19	1.97	39.2	36			
7. Fish Waste @ 80 kg N/ha	11.4 bc	1.37	2.10	3.46	39.1	37			
8. Fish Waste @ 120 kg N/ha	6.3 c	1.01	1.52	2.53	40.1	37			
9. Fish Waste + Urea + ESN @ 0 kg N/ha♠	22.3 ab	0.89	1.31	2.20	43.9	37			
10. Fish Waste + Urea + ESN @ 40 kg N/ha♠	11.9 bc	0.95	1.33	2.28	39.3	37			
11. Fish Waste + Urea + ESN @ 80 kg N/ha♠	11.1 bc	1.33	2.05	3.39	40.2	36			
12. Fish Waste + Urea + ESN @ 120 kg N/ha♠	7.6 c	1.22	1.86	3.09	40.6	35			
MEAN	14.0	1.13	1.71	2.84	39.8	37			
C.V. (%)	60.3	37.6	36.2	35.7	14.9	-			
PR>F	<0.0001	0.2700	0.3400	0.2800	0.9200	-			
SE	1.22	0.062	0.089	0.146	0.85	-			
LSD (0.05)	7.9	NS	NS	NS	NS	-			

Notes:

♣Indicates nutrients utilization efficiency

♦ Blend of Urea and ESN 3:1 on N basis; ▲ Blend of Fish Waste and Chemical Fertilizers (Urea and ESN 3:1) 1:1 on N basis

Pre seeding soil analysis 0-30 cm (ppm): Ammoniacal N: 6, Nitrate N: 10, and Total N: 16

a Means followed by the same letter codes were not significantly different based on Tukey's test (P=0.05)

4.1.2 Evaluation of Fish Waste as a Source of N for Spring Wheat Production... Cont'd from Previous page

TREATMENTS	LODGING▼ <u>(0-9)</u>	PLANTS/ a (m ²)	HEIGHT ^b (cm)
	0	100 1	5 0
1. Urea + ESN @ 0 kg N/ha \blacklozenge	0	190 <i>ab</i>	58
2. Urea + ESN @ 40 kg N/ha♦	0	173 b	57
3. Urea + ESN @ 80 kg N/ha♦	0	213 ab	58
4. Urea + ESN @ 120 kg N/ha♦	0	160 <i>b</i>	57
5. Fish Waste @ 0 kg N/ha	0	200 ab	55
6. Fish Waste @ 40 kg N/ha	0	180 <i>b</i>	55
7. Fish Waste @ 80 kg N/ha	0	207 ab	57
8. Fish Waste @ 120 kg N/ha	0	173 <i>b</i>	55
9. Fish Waste + Urea + ESN @ 0 kg N/ha♠	0	183 <i>b</i>	56
10. Fish Waste + Urea + ESN @ 40 kg N/ha♠	0	213 ab	55
11. Fish Waste + Urea + ESN @ 80 kg N/ha♠	0	283 a	57
12. Fish Waste + Urea + ESN @ 120 kg N/has	0	177 b	54
MEAN	0	196	56
C.V. (%)	-	23.8	8.1
PR>F	-	0.0150	0.9900
SE	-	6.7	0.7
LSD (0.05)	-	57	NS

Notes:

▼ Lodging is rated on the scale 0-9, where 0 = standing and 9 = flat.

a Letter codes not displayed for the means were not affected by the treatment (P>0.05)

	YIELD										
	GRAIN 秦	GRAIN b	STRAW ^b	BIOMASS ^b	HARVEST	1000 K	HEIGHT				
SOURCES OF NITROGEN	kg/kg NUTRIENTS ^b	<u></u>	(MT/ha)		$\underline{\text{INDEX (\%)}^{b}}$	<u>WT.(g)</u>	<u>(cm)</u> ^b				
Urea + ESN	16.4	1.29	1.91	3.20	39.8	36	58				
Fish Waste	12.4	1.01	1.57	2.58	38.7	37	56				
Fish Waste + Urea + ESN	13.3	1.10	1.64	2.74	41.0	36	56				
MEAN	14.0	1.13	1.71	2.84	39.8	37	56				
C.V. (%)	60.3	37.6	36.2	35.7	14.9	-	8.1				
PR>F	0.3900	0.1900	0.2600	0.2100	0.5500	-	0.3900				
SE	1.22	0.062	0.089	0.146	0.85	-	0.7				
LSD (0.05)	NS	NS	NS	NS	NS	-	NS				

4.1.2 Evaluation of Fish Waste as a Source of N for Spring Wheat Production...Cont'd from Previous page

			YIELD				
NITROGEN RATE	GRAIN \clubsuit^a	GRAIN ^a	STRAW b	BIOMASS ^b	<u>HARVEST</u>	1000 K	HEIGHT
<u>(kg/ha)</u>	<u>kg/kg NUTRIENTS</u>	<u></u>	(MT/ha)	<u></u>	<u>INDEX (%)^b</u>	WT.(g)	(cm) ^b
0	24.7 <i>a</i>	0.99 b	1.53	2.52	40.0	38	57
40	12.5 <i>b</i>	1.00 <i>ab</i>	1.53	2.53	38.7	36	56
80	11.9 <i>b</i>	1.43 a	2.07	3.50	40.9	37	57
120	7.0 <i>b</i>	1.12 <i>ab</i>	1.71	2.82	39.7	36	55
MEAN	14.0	1.13	1.71	2.84	39.8	37	56.3
C.V. (%)	60.3	37.6	36.2	35.7	14.9	-	8.1
PR>F	<0.0001	0.0340	0.1100	0.0590	0.8500	-	0.8200
SE	1.22	0.062	0.089	0.146	0.85	-	0.7
LSD (0.05)	4.5	0.33	NS	NS	NS	-	NS

Notes:

♣Indicates nutrients utilization efficiency

a Means followed by the same letter codes were not significantly different based on Tukey's test (P=0.05)

4.1.2 Evaluation of Fish Waste as a Source of N for Spring Wheat Production Averaged Over 2018-2020

			YIELD.				
	GRAIN \clubsuit ^b	GRAIN b	STRAW ^b	BIOMASS ^b	HARVEST	1000 K	TEST WT. *
<u>TREATMENTS</u>	<u>kg/kg NUTRIENTS</u>	<u></u>	(MT/ha).	<u></u>	<u>INDEX (%)</u> ^b	<u>WT.(g)</u> ^b	<u>(kg/hl)</u> ^b
1. Urea + ESN @ 0 kg N/ha♦	31.0	3.35	2.85	6.19	50.3	37.8	76
2. Urea + ESN @ 40 kg N/ha♦	24.6	3.90	3.29	7.19	50.3	37.2	76
3. Urea + ESN @ 80 kg N/ha♦	22.5	4.51	3.36	7.87	53.8	39.1	77
4. Urea + ESN @ 120 kg N/ha♦	16.8	4.13	3.23	7.36	51.4	38.2	78
5. Fish Waste @ 0 kg N/ha	26.6	2.99	2.55	5.54	48.9	38.4	76
6. Fish Waste @ 40 kg N/ha	20.2	3.31	2.57	5.87	50.4	38.6	77
7. Fish Waste @ 80 kg N/ha	19.1	3.81	3.18	6.99	50.6	38.6	77
8. Fish Waste @ 120 kg N/ha	15.9	3.91	3.04	6.95	51.5	39.0	77
9. Fish Waste + Urea + ESN @ 0 kg N/ha♠	28.3	3.22	2.57	5.80	52.4	36.3	76
10. Fish Waste + Urea + ESN @ 40 kg N/ha♠	22.0	3.57	2.84	6.41	50.5	37.5	77
11. Fish Waste + Urea + ESN @ 80 kg N/ha♠	20.2	4.08	3.30	7.38	51.5	38.1	77
12. Fish Waste + Urea + ESN @ 120 kg N/ha♠	18.1	4.45	3.41	7.86	52.4	38.8	78
MEAN	22.1	3.77	3.02	6.78	51.2	38.1	77
C.V. (%)	63.1	73.5	51.0	63.1	18.1	8.0	2.0
PR>F	0.0930	0.9700	0.8900	0.9500	1.0000	0.2800	0.2800
SE	1.08	0.231	0.128	0.357	0.77	0.3	0.2
LSD (0.05)	NS	NS	NS	NS	NS	NS	NS

Notes:

♣Indicates nutrients utilization efficiency

♦ Blend of Urea and ESN 3:1 on N basis; ♠ Blend of Fish Waste and Chemical Fertilizer (Urea and ESN 3:1) 1:1 on N basis

* Test wt. were only averaged over 2018 - 2019

a Means followed by the same letter codes were not significantly different based on Tukey's test (P=0.05)

4.1.2 Evaluation of Fish Waste as a Source of N for Spring Wheat Production Averaged Over 2018-2020

	LODGING ▼	PLANTS	TILI	LERS/*	HEIGHT
TREATMENTS	<u>(0-9)</u>	$(m^2)^{b}$	$(m^2)^{b}$	PLANT ^b	(cm) ^b
1. Urea + ESN @ 0 kg N/ha♦	0	368	672	1.5	66
2. Urea + ESN @ 40 kg N/ha♦	0	349	635	1.5	68
3. Urea + ESN @ 80 kg N/ha♦	0	409	738	1.5	70
4. Urea + ESN @ 120 kg N/ha♦	0	369	658	1.4	70
5. Fish Waste @ 0 kg N/ha	0	389	615	1.3	66
6. Fish Waste @ 40 kg N/ha	0	376	645	1.4	67
7. Fish Waste @ 80 kg N/ha	0	368	585	1.3	68
8. Fish Waste @ 120 kg N/ha	0	359	630	1.4	67
9. Fish Waste + Urea + ESN @ 0 kg N/ha♠	0	351	640	1.5	66
10. Fish Waste + Urea + ESN @ 40 kg N/ha♠	0	404	648	1.3	67
11. Fish Waste + Urea + ESN @ 80 kg N/ha	0	401	682	1.5	67
12. Fish Waste + Urea + ESN @ 120 kg N/ha♠	0	366	633	1.4	69
MEAN	0	376	648	1.4	68
C.V. (%)	-	38.1	14.3	14.8	17.2
PR>F	-	1.0000	0.1900	0.4900	1.0000
	-				
SE	-	11.9	9.5	0.02	1.0
LSD (0.05)	-	NS	NS	NS	NS

Notes:

▼ Lodging is rated on the scale 0-9, where 0 = standing and 9 = flat.

* Tillers/m² and per plant were only averaged over 2018 - 2019

a Means followed by the same letter codes were not significantly different based on Tukey's test (P=0.05)

4.1.2 Evaluation of Fish Waste as a Source of N for Spring Wheat Production Averaged Over 2018-2020

		••••	YIELD					
	GRAIN \clubsuit ^b	GRAIN b	STRAW ^b	BIOMASS ^b	HARVEST	1000 K	TEST WT. *	HEIGHT
SOURCES OF NITROGEN	<u>kg/kg NUTRIENTS</u>	<u></u>	(MT/ha))	<u>INDEX (%)</u> ^b	<u>WT.(g)</u> ^b	<u>(kg/hl)</u> ^b	<u>(cm)</u> ^b
Urea + ESN	23.7	3.97	3.18	7.15	51.5	38.1	77	69
Fish Waste	20.4	3.50	2.83	6.34	50.4	38.7	76	67
Fish Waste + Urea + ESN	22.2	3.83	3.03	6.86	51.7	37.7	77	67
MEAN	22.1	3.8	3.0	6.8	51.2	38.1	76.6	67.5
C.V. (%)	63.1	73.5	51.0	63.1	18.1	8.0	2.0	17.2
PR>F	0.4700	0.7000	0.5400	0.6400	0.7600	0.4000	0.4000	0.6800
SE	1.08	0.231	0.128	0.357	0.77	0.3	0.2	1.0
LSD (0.05)	NS	NS	NS	NS	NS	NS	NS	NS
			YIELD					
NITROGEN RATE	GRAIN \clubsuit^a	GRAIN b	STRAW ^b	BIOMASS ^b	<u>HARVEST</u>	1000 K	TEST WT. *	HEIGHT
<u>(kg/ha)</u>	<u>kg/kg NUTRIENTS</u>	<u></u>	(MT/ha))	<u>INDEX (%) ^b</u>	<u>WT.(g)</u>	<u>(kg/hl)</u>	<u>(cm)</u>
0	28.6 a	3.19	2.66	5.84	50.5	37.5	76	66
40	22.3 <i>ab</i>	3.59	2.90	6.49	50.4	37.8	77	67
80	20.6 b	4.13	3.28	7.41	52.0	38.6	77	68
120	16.9 <i>b</i>	4.16	3.23	7.39	51.8	38.7	77	68
MEAN	22.1	3.8	3.0	6.8	51.2	38.1	76.6	67.5
C.V. (%)	63.1	73.5	51.0	63.1	18.1	8.0	2.0	17.2
PR>F	0.0012	0.3800	0.2800	0.3400	0.8400	0.0520	0.0520	0.8200
SE	1.08	0.231	0.128	0.357	0.77	0.3	0.2	1.0
LSD (0.05)	5.8	NS	NS	NS	NS	NS	NS	NS

Notes:

♣Indicates nutrients utilization efficiency

* Test wt. were only averaged over 2018 - 2019

a Means followed by the same letter codes were not significantly different based on Tukey's test (P=0.05)

4.1.3 Winter Wheat Survival

PLANTING DATE:	August 26, 2019	
FERTILIZERS:	120 kg N/ha (174 kg/ha 46-0-0; 91 kg/ha 44-0-0)	5.6 kg S/ha (35 kg/ha 0-0-0-16-20)
	20 kg P ₂ O ₅ /ha (45 kg/ha 0-45-0)	7 kg Zinc/ha (35 kg/ha 0-0-0-16-20)
	K ₂ O as per treatment	1 kg Boron/ha (7 kg/ha 0-0-0-15)
HERBICIDE:	September 23, 2019 Post-emergence; Refine SG @ 30) g/ha + 0.2% v/v surfactant
HARVEST DATE:	August 30, 2020	
PREVIOUS CROP:	Fallow	

		YIELD ^b									
				GRAIN 秦	GRAIN	STRAW	BIOMASS	1000 K	TEST WT.	PLANTS ^b	TILLERS b
	TR	EATMENTS		kg/kg NUTRIENTS ^b	<u></u>	(MT/ha)		<u>WT.(g)</u>	<u>(kg/hl)</u>	/r	n^2
<u>.</u>	Seed treatment	Chemical Sprayed ^a	<u>K₂O kg/ha</u>								
1	No	No	20	29.3	4.96	8.05	13.02	33	76	370	653
2]	No	No	40	22.2	4.20	7.45	11.65	31	77	417	713
3	Fungicide+insecticide	No	20	26.8	4.53	7.41	11.94	33	77	270	493
4	Fungicide+insecticide	No	40	23.5	3.69	7.45	11.75	33	77	330	600
5	No	Abscisic acid	20	24.2	3.99	7.37	11.41	32	77	393	417
6	No	Abscisic acid	40	21.2	4.02	6.91	10.93	32	77	320	697
7]	No	Headline	20	24.4	4.14	7.80	11.94	34	77	467	563
8]	No	Headline	40	23.5	4.45	8.17	12.62	34	77	410	487
9]	No	Seaweed extract	20	26.6	4.51	7.16	11.67	33	76	300	737
10	No	Seaweed extract	40	22.2	4.20	7.53	11.73	33	77	450	647
]	MEAN			24.4	4.27	7.53	11.87	33	77	373	601
(C.V. (%)			20.1	14.6	11.6	10.6	-	-	27.7	43.6
]	PR>F			0.3310	0.5240	0.7700	0.8790	-	-	0.3200	0.9200
5	SE			0.75	0.118	0.138	0.196	-	-	16.3	41.4
]	LSD (0.05)			NS	NS	NS	NS	-	-	NS	NS

Notes:

Pre seeding soil analysis 0-30 cm (ppm): Ammoniacal N: 4, Nitrate N: 9, Total N: 13, and S: 6

Pre seeding soil analysis 0-15 cm (ppm): Potassium K: 75

Indicates nutrients utilization efficiency

a Applied at tillering

4.1.3 Winter Wheat Survival... Cont'd from previous page

		YIELD ^a .				YIELD ^a		
	GRAIN	STRAW	BIOMASS		GRAIN	STRAW	BIOMASS	
	<u></u>	(MT/ha)			<u></u>	(MT/ha).	[/ha]	
<u>K₂O kg/ha</u>				Chemical used				
20	4.42	7.56	11.99	None	4.58	7.75	12.34	
40	4.11	7.50	11.61	Fungicide+insecticide ^b	4.11	7.43	11.54	
				Abscisic acid ^c	4.00	7.14	11.14	
MEAN	4.27	7.53	11.80	Headline ^d	4.29	7.99	12.28	
C.V. (%)	14.4	11.6	10.6	Seaweed extract ^e	4.36	7.34	11.70	
PR>F	0.1120	0.8400	0.3120					
SE	0.118	0.138	0.196	MEAN	4.35	7.59	11.94	
LSD (0.05)	NS	NS	NS	C.V. (%)	14.4	11.6	10.6	
				PR>F	0.4120	0.3300	0.1900	
				SE	0.118	0.138	0.196	
				LSD (0.05)	NS	NS	NS	

Notes:

a Letter codes not displayed for the means were not affected by the treatments (P>0.05)

b Fungicide+insecticide seed treatment: Raxil Pro @325 mL/100 kg of seed

c Abscisic acid @ 21 g/ha

d Headline @ 0.5L/ha

e Seaweed extract: Toggle® @ 3L/ha

4.1.3 Winter Wheat Survival... Cont'd from previous page

				HARVEST	DAY	S TO	HEIGHT	LODGING ▼
	<u>T</u>	REATMENTS		INDEX (%) b	HEADING ^b	MATURE ^b	<u>(cm)</u> ^b	<u>(0-9)</u>
	Seed treatment	Chemical Sprayed ^a	<u>K₂O kg/ha</u>					
1	No	No	20	38.1	284	324	77	0
2	No	No	40	36.1	285	324	79	0
3	Fungicide+insecticide	No	20	38.1	284	323	77	0
4	Fungicide+insecticide	No	40	35.7	282	322	74	0
5	No	Abscisic acid	20	36.8	284	323	77	0
6	No	Abscisic acid	40	36.8	285	324	78	0
7	No	Headline	20	34.9	285	324	74	0
8	No	Headline	40	35.1	283	324	80	0
9	No	Seaweed extract	20	38.5	285	324	80	0
10	No	Seaweed extract	40	35.7	283	324	77	0
	MEAN			36.6	284	323	77	0
	C.V. (%)			12.7	0.3	0.3	5.5	-
	PR>F			0.7080	0.5800	0.5800	0.6000	-
	SE			0.72	0.2	0.1	0.7	-
	LSD (0.05)			NS	NS	NS	NS	-

Notes:

- ▼ Lodging is rated on the scale 0-9, where 0 =standing and 9 =flat.
- *a* Applied at tillering
- b Letter codes not displayed for the means not affected by the treatment (P>0.05)

4.1.3 Winter Wheat Survival Averaged Over 2019-2020

					YIELD ^b					
			GRAIN 秦	GRAIN	STRAW	BIOMASS	1000 K	TEST WT.	PLANTS ^b	TILLERS ^b
TR	EATMENTS		kg/kg NUTRIENTS ^b	<u></u>	(MT/ha)		<u>WT.(g)</u>	<u>(kg/hl)</u>	/1	m^2
Seed treatment	Chemical Sprayed ^a	<u>K₂O kg/ha</u>								
1 No	No	20	31.9	5.87	8.40	14.27	31	76	475	927
2 No	No	40	26.3	5.40	9.06	14.46	32	78	490	995
3 Fungicide+insecticide	No	20	30.9	5.70	8.19	13.88	32	78	430	825
4 Fungicide+insecticide	No	40	25.2	5.21	8.13	13.35	33	77	448	963
5 No	Abscisic acid	20	27.2	5.02	7.76	12.77	32	77	475	873
6 No	Abscisic acid	40	24.6	5.03	7.89	12.92	33	78	455	912
7 No	Headline	20	29.6	5.48	8.32	13.79	32	77	527	993
8 No	Headline	40	26.8	5.47	8.21	13.69	30	78	483	922
9 No	Seaweed extract	20	31.7	5.85	8.14	13.99	32	77	437	1017
10 No	Seaweed extract	40	25.0	5.10	8.11	13.21	32	77	520	1032
MEAN			27.9	5.41	8.22	13.63	32	77	474	946
C.V. (%)			23.4	27.4	16.0	18.5	-	-	27.2	44.0
PR>F			0.4100	0.6700	0.3400	0.4500	-	-	0.5400	0.5200
SE			0.72	0.165	0.147	0.282	-	-	14.4	46.8
LSD (0.05)			NS	NS	NS	NS	-	-	NS	NS

Notes:

✤ Indicates nutrients utilization efficiency

a At tillering

4.1.3 Winter Wheat Survival Averaged Over 2019-2020... Cont'd from previous page

	 GRAIN	YIELD ^{<i>a</i>} . STRAW	BIOMASS		 GRAIN	YIELD ^a STRAW	BIOMASS
		<u>(MT/ha)</u>				(MT/ha).	
<u>K₂O kg/ha</u>				Chemical used			
20	5.58	8.16	13.74	None	5.64	8.73	14.36
40	5.24	8.28	13.53	Fungicide+insecticide ^b	5.46	8.16	13.62
				Abscisic acid ^c	5.03	7.82	12.85
MEAN	5.41	8.22	13.63	Headline ^d	5.48	8.26	13.74
C.V. (%)	27.4	16.0	18.5	Seaweed extract ^e	5.48	8.12	13.60
PR>F	0.3100	0.6800	0.7000				
SE	0.166	0.147	0.282	MEAN	5.55	8.44	13.99
LSD (0.05)	NS	NS	NS	C.V. (%)	27.4	16.0	18.5
				PR>F	0.8300	0.4200	0.5800
				SE	0.166	0.147	0.282
				LSD (0.05)	NS	NS	NS

Notes:

a Letter codes not displayed for the means were not affected by the treatments (P>0.05)

b Fungicide+insecticide seed treatment: Raxil Pro @325 mL/100 kg of seed

c Abscisic acid @ 21 g/ha

d Headline @ 0.5L/ha

e Seaweed extract: Toggle® @ 3L/ha

4.1.3 Winter Wheat Survival Averaged Over 2019-2020... Cont'd from previous page

				HARVEST	DAYS TO		HEIGHT	LODGING ▼
	TREATMENTS			INDEX (%) b	HEADING ^b	MATURE ^b	(cm) ^b	<u>(0-9)</u>
	Seed treatment	Chemical Sprayed ^a	<u>K₂O kg/ha</u>					
1	No	No	20	40.9	290	333	85	0
2	No	No	40	37.0	291	333	85	0
3	Fungicide+insecticide	No	20	40.7	290	333	85	0
4	Fungicide+insecticide	No	40	37.9	289	332	84	0
5	No	Abscisic acid	20	38.8	290	332	85	0
6	No	Abscisic acid	40	38.7	291	333	85	0
7	No	Headline	20	39.2	291	333	84	0
8	No	Headline	40	39.5	290	333	88	0
9	No	Seaweed extract	20	41.4	291	333	87	0
10	No	Seaweed extract	40	38.2	290	333	86	0
	MEAN			39.2	290	333	85	0
	C.V. (%)			13.4	2.2	2.8	10.8	-
	PR>F			0.8800	0.9200	0.9200	0.6000	-
	SE			0.59	0.7	1.1	1.0	-
	LSD (0.05)			NS	NS	NS	NS	-

Notes:

▼ Lodging is rated on the scale 0-9, where 0 =standing and 9 = flat.

a Applied at tillering

4.1.4 Population and NPK Fertilizers Regimes for Winter Rye

PLANTING DATE:	Winter Rye: August 23 2019; Barley: June 2, 2020)					
FERTILIZERS:	120 kg N/ha (174 kg/ha 46-0-0, 91 kg/ha 44-0-0)	5.6 kg S/ha (35 kg/ha 0-0-0-16-20)	1 kg Boron/ha (7 kg/ha 0-0-0-15)				
	50 kg P ₂ O ₅ /ha (111 kg/ha 0-45-0)	20 kg K ₂ O/ha (33 kg/ha 0-0-60)	7 kg Zn/ha (35 kg/ha 0-0-0-16-20)				
HERBICIDE:	September 23, 2019 Post-emergence; Refine SG (a	0,30 g/ha + 0.2% v/v surfactant					
HARVEST DATE: Winter Rye: August 7, 2020; Barley: September 16, 2020							
PREVIOUS CROP:	Fallow						
YIELD							

			YIELD				
FACTOR A	GRAIN 🛧	GRAIN ^a	STRAW ^a	BIOMASS ^a	HARVEST	1000 K	TEST WT.
VARIETY	kg/kg NUTRIENTS ^b		(MT/ha)	<u></u>	<u>INDEX (%)^{<i>a</i>}</u>	<u>WT.(g)</u>	<u>(kg/hl)</u>
Hazlet	150	4.71 ab	6.60 a	11.31 a	41.6 b	32	69
Guttino	173	5.47 a	5.65 ab	11.11 ab	49.1 a	32	69
Brasetto	135	4.03 ab	4.86 b	8.89 ab	45.2 ab	32	69
Bono	113	3.55 b	4.77 b	8.32 b	43.4 b	32	69
MEAN	143	4.44	5.47	9.91	44.8	32	69
C.V. (%)	112.0	29.0	27.1	26.3	10.4	-	-
PR>F	0.6300	<0.0001	0.0240	0.0190	0.0019	-	-
SE	26.64	0.215	0.247	0.435	0.78	-	-
LSD (0.05)	NS	1.10	1.30	2.20	3.7		
FACTOR A	HEIGHT	DAYS TO	TILLERS/				
VARIETY	$(cm)^{a}$	MATURE	$\underline{m}^{2 \ b}$				
Hazlet	130 a	341	493				
Guttino	101 c	341	587				
Brasetto	113 <i>b</i>	341	575				
Bono	97 c	341	535				
MEAN	110	341	548				
C.V. (%)	12.6	-	27.4				
PR>F	<0.0001	-	0.5600				
SE	2.3	-	25.0				
LSD (0.05)	6	-	NS				

Notes:

Pre seeding soil analysis 0-30 cm (ppm): Ammoniacal N: 3, Nitrate N: 8, Total N: 11, and S: 9 All Indicates nutrients utilization efficiency

a Means followed by the same letter codes were not significantly different based on Tukey's test (P=0.05)

4.1.4 Population and NPK Fertilizers Regimes for Winter Rye... Cont'd from previous page

FERTILIZERS FOR BARLEY:

70 kg N/ha (152 kg/ha 46-0-0) 20 kg P₂O₅/ha (45 kg/ha 0-45-0)

20 kg K₂O/ha (33 kg/ha 0-0-60)

	U 2 X	2 ,	YIE	ELD		
FACTOR B	GRAIN 秦	GRAIN	a STRAW	BIOM	ASS ^a J	HARVEST
SEEDING RATE & NPK	<u>kg/kg NUTRIEN</u>	NTS ^b	(MT	<u>7/ha)</u>	<u>11</u>	NDEX (%) ^b
Spring barley (100 % seed/fertilizers)	26	2.90	<i>b</i> 2.83	<i>b</i> 5.74	С	50.7
50% seeding rate + 0% NPK	342	3.21	<i>ab</i> 3.82	<i>ab</i> 7.03	bc	45.9
50% seeding rate + 50% NPK	38	3.97	ab 6.10	<i>ab</i> 10.07	abc	38.9
50% seeding rate + 100% NPK	29	5.71	a 7.07	<i>a</i> 12.77	a	44.0
75% seeding rate + 0% NPK	383	3.60	<i>ab</i> 4.16	<i>ab</i> 7.76	abc	46.5
75% seeding rate + 50% NPK	44	4.63	ab 5.59	<i>ab</i> 10.22	abc	45.5
75% seeding rate + 100% NPK	28	5.53	ab 6.76	<i>a</i> 12.29	ab	45.0
100% seeding rate + 0% NPK	350	3.29	<i>ab</i> 3.86	<i>ab</i> 7.15	bc	46.3
100% seeding rate + 50% NPK	44	4.56	<i>ab</i> 5.41	<i>ab</i> 9.97	abc	45.5
100% seeding rate + 100% NPK	27	5.46	<i>ab</i> 6.45	a 11.91	ab	45.7
MEAN	131	4.3	5.2	9.5		45.4
C.V. (%)	118.6	30.6	31.2	29.4		10.5
PR>F	0.5500	0.0056	0.0130	0.0052		0.8500
SE	24.6	0.208	0.257	0.442		0.75
LSD (0.05)	NS	1.60	2.00	3.30		NS
FACTOR B	TEST WT.	1000 K	HEIGHT	DAYS TO		RS/
SEEDING RATE & NPK	<u>(kg/hl)</u>	$WT.(g)^{a}$	<u>(cm)</u> ^b	<u>MATURE</u>	$\underline{m}^{2 a}$	
Spring barley (100 % seed/fertilizers)	50	43 <i>a</i>	-	-	-	
50% seeding rate + 0% NPK	70	34 <i>b</i>	112	341	483 <i>a</i>	
50% seeding rate + 50% NPK	69	34 <i>b</i>	110	341	450 a	
50% seeding rate + 100% NPK	70	31 <i>b</i>	114	341	557 a	
75% seeding rate + 0% NPK	69	33 <i>b</i>	104	341	473 a	
75% seeding rate + 50% NPK	69	31 <i>b</i>	111	341	437 <i>a</i>	
75% seeding rate + 100% NPK	68	32 <i>b</i>	112	341	770 a	
100% seeding rate + 0% NPK	70	33 <i>b</i>	105	341	547 a	
100% seeding rate + 50% NPK	69	30 <i>b</i>	109	341	613 a	
100% seeding rate + 100% NPK	69	29 b	116	341	597 a	
MEAN	65	33.0	110	341	547	
C.V. (%)	-	11.3	12.6	-	27.4	
PR>F	- <0.0	0001	0.9800	-	0.0360	
SE	-	0.59	2.3	-	25.0	
LSD (0.05)	-	4	NS	-	207	

Notes:

♣ Indicates nutrients utilization efficiency

a Means followed by the same letter codes were not significantly different based on Tukey's test (P=0.05)

4.1.4 Population and NPK Fertilizers Regimes for Winter Rye... Cont'd from previous page

			YIELD				
	GRAIN 秦	GRAIN ^b	STRAW ^b	BIOMASS ^b	HARVEST	1000 K	TILLERS/
SEEDING RATE	kg/kg NUTRIENTS ^b	<u></u>	(MT/ha)	<u></u>	<u>INDEX (%) ^b</u>	<u>WT.(g)</u> ^{<i>a</i>}	$\underline{m}^{2 \ b}$
50%	136	4.30	5.66	9.96	43.0	33 a	497
75%	152	4.59	5.50	10.09	45.7	32 <i>ab</i>	560
100%	140	4.44	5.24	9.68	45.9	31 <i>b</i>	586
MEAN	143	4.4	5.5	9.9	44.8	31.9	547
C.V. (%)	112	29.0	27.1	26.3	10.4	5.3	27.4
PR>F	0.9500	0.7753	0.4441	0.7710	0.1300	0.0003	0.1500
SE	26.63	0.215	0.247	0.435	0.78	0.3	25.0
LSD (0.05)	NS	NS	NS	NS	NS	1	NS
	GRAIN 秦	GRAIN ^a	STRAW ^{<i>a</i>}	BIOMASS ^a	HARVEST	1000 K	TILLERS/
NPK RATE	kg/kg NUTRIENTS ^a	<u></u>	(MT/ha)	<u></u>	<u>INDEX (%) ^b</u>	<u>WT.(g)</u>	$\underline{m}^{2 a}$
0%	358 a	3.37 c	3.94 <i>c</i>	7.31 <i>c</i>	46.2	33 a	501 a
50%	42 <i>b</i>	4.38 <i>b</i>	5.70 <i>b</i>	10.09 <i>b</i>	43.3	32 <i>b</i>	500 a
100%	28 <i>b</i>	5.56 a	6.76 a	12.32 a	44.9	31 <i>b</i>	641 a
MEAN	143	4.4	5.5	9.9	44.8	31.9	547
C.V. (%)	112.0	29.0	27.1	26.3	10.4	5.3	27.4
PR>F	<0.0001	<0.0001	<0.0001	<0.0001	0.5100	<0.0001	0.0220
SE	26.6	0.215	0.247	0.435	0.78	0.3	25.0
LSD (0.05)	69	0.62	0.50	0.81	NS	1	118

Notes:

♣ Indicates nutrients utilization efficiency

a Means followed by the same letter codes were not significantly different based on Tukey's test (P=0.05)

4.1.4 Population and NPK Fertilizers Regimes for Winter Rye Averaged Over 2019-2020

	YIELD											
FACTOR A	GRAIN 秦	GRAIN ^b	STRAW ^b	BIOMASS ^b	HARVEST	1000 K	TEST WT.					
VARIETY	<u>kg/kg NUTRIENTS ^b</u>	<u></u>	(MT/ha)	·····	<u>INDEX (%) <i>a</i></u>	WT.(g) ^b	<u>(kg/hl)</u>					
Hazlet	126	4.54	6.14	10.69	42.3 <i>b</i>	37	69					
Guttino	134	4.80	5.52	10.32	46.1 a	37	69					
Brasetto	121	4.20	5.28	9.48	44.2 <i>ab</i>	38	70					
Bono	107	3.92	5.17	9.09	43.1 <i>ab</i>	37	69					
MEAN	122	4.37	5.53	9.90	43.9	37	69					
C.V. (%)	108	28.7	24.0	25.0	8.8	15.3	-					
PR>F	0.9400	0.1600	0.1200	0.1900	0.0210	0.9800	-					
SE	15.5	0.148	0.156	0.291	0.456	0.7	-					
LSD (0.05)	NS	NS	NS	NS	2.4	NS						
FACTOR A	HEIGHT	DAYS TO	TILLERS/									
VARIETY	$(\text{cm})^{a}$	MATURE	$\underline{m}^{2 b}$									
Hazlet	125 a	339	433									
Guttino	113 ab	339	446									
Brasetto	119 <i>ab</i>	339	460									
Bono	110 <i>b</i>	339	479									
MEAN	117	339	455									
C.V. (%)	12.6	-	35.1									
PR>F	0.0094	-	0.8400									
SE	1.7	-	18.8									
LSD (0.05)	9	-	NS									

Notes:

♣ Indicates nutrients utilization efficiency

a Means followed by the same letter codes were not significantly different based on Tukey's test (P=0.05)

4.1.4 Population and NPK Fertilizers Regimes for Winter Rye... Cont'd from previous page Averaged Over 2019-2020

Averaged Over 2017-2020				Y	TELD			
FACTOR B	GRAIN	*	GRAIN '		TRAW ^{<i>a</i>}	BIOMA	SS a	HARVEST
<u>SEEDING RATE & NPK</u>	<u>kg/kg NUTRI</u>	<u>ENTS "</u>	<u></u>	<u>(</u> N	<u>/IT/ha)</u>	<u></u>	<u>_</u>	INDEX (%) ^b
Spring barley (100 % seed/fertilizers)	181 <i>ab</i>		3.63 ca	1	3.18 <i>d</i>	6.81	с	53.2
50% seeding rate $+$ 0% NPK	271 <i>a</i>		2.91 d		3.88 cd	6.79	С	42.9
50% seeding rate + 50% NPK	40 <i>b</i>		4.00 be	cd	5.97 ab	9.97	abc	39.9
50% seeding rate + 100% NPK	26 <i>b</i>		5.03 al	bc	6.39 a	11.42	а	43.7
75% seeding rate + 0% NPK	308 a		3.32 ca	d	4.30 bcd	7.62	bc	43.6
75% seeding rate + 50% NPK	46 <i>b</i>		4.66 al	bcd	5.90 abc	10.56	ab	44.3
75% seeding rate + 100% NPK	29 <i>b</i>		5.46 al	5	6.49 <i>a</i>	11.95	a	45.7
100% seeding rate + 0% NPK	301 <i>a</i>		3.28 cc	d	4.18 bcd	7.46	bc	44.2
100% seeding rate + 50% NPK	47 <i>b</i>		4.74 al	bc	5.80 abc	10.54	ab	44.9
100% seeding rate + 100% NPK	31 <i>b</i>		5.91 a		6.83 <i>a</i>	12.74	a	46.3
MEAN	128		4.3		5.3	9.6	-	44.9
C.V. (%)	106.1		29.0		27.6	26.8		10.9
PR>F	0.0320	•	<0.0001)001	<0.0001		0.5400
SE	15.2		0.139		.164	0.287		0.55
LSD (0.05)	133		1.10		1.20	2.20)	NS
FACTOR B	TEST WT.	1000	K	HEIGH	T DA	YS TO	TILI	LERS/.
<u>SEEDING RATE & NPK</u>	<u>(kg/hl)</u>	<u>WT.(g</u>	$)^{a}$	(cm) ^b	M	ATURE	<u>m</u>	$\frac{2 b}{1}$
Spring barley (100 % seed/fertilizers)	54	45 a		-		_		_
50% seeding rate $+$ 0% NPK	70	38 a		115		339	4	10
50% seeding rate + $50%$ NPK	69	39 a		118		339		42
50% seeding rate + $100%$ NPK	70	38 a		119		339		63
75% seeding rate + $0%$ NPK	69	38 a		113		339		83
75% seeding rate + 50% NPK	69	37 a		121		339		07
75% seeding rate + 100% NPK	69	37 a		116		339		45
100% seeding rate + 0% NPK	70	37 a		108		339		35
100% seeding rate + 50% NPK	70	36 b		119		339		13
100% seeding rate + 100% NPK	70	36 a		123		339		92
MEAN	66	38		117		339	4	54
C.V. (%)	-	15.5		17.4		-		8.0
PR>F	-	0.0028		0.7110)	-		400
SE	_	0.7		2.3		-		9.2
LSD (0.05)	-	6		NS		-		NS

Notes:

♣ Indicates nutrients utilization efficiency

a Means followed by the same letter codes were not significantly different based on Tukey's test (P=0.05)

4.1.4 Population and NPK Fertilizers Regimes for Winter Rye... Cont'd from previous page Averaged Over 2019-2020

Interaged Over 201			YIELD				
	GRAIN 秦	GRAIN ^b	STRAW ^b	BIOMASS ^b	HARVEST	1000 K	TILLERS/
SEEDING RATE	kg/kg NUTRIENTS ^b	<u></u>	(MT/ha)	<u></u>	<u>INDEX (%) ^a</u>	<u>WT.(g)</u> ^b	$\underline{\mathbf{m}^{2\ b}}$
50%	112	3.98	5.41	9.39	42.1 <i>b</i>	38	438
75%	128	4.48	5.56	10.04	44.5 ab	37	445
100%	126	4.64	5.61	10.25	45.1 <i>a</i>	36	480
MEAN	122	4.4	5.5	9.9	43.9	37	454
C.V. (%)	107.8	28.7	24.0	25.0	8.8	15.3	35.1
PR>F	0.9800	0.0610	0.6050	0.2190	0.0066	0.1800	0.3700
SE	15.50	0.148	0.156	0.291	0.46	0.7	18.8
LSD (0.05)	NS	NS	NS	NS	2.1	NS	NS
	GRAIN 秦	GRAIN ^a	STRAW ^a	BIOMASS ^a	HARVEST	1000 K	TILLERS/
NPK RATE	<u>kg/kg NUTRIENTS ^a</u>	<u></u>	(MT/ha)	<u></u>	<u>INDEX (%)</u> ^b	<u>WT.(g)</u> ^b	$\underline{m}^{2 a}$
0%	293 a	3.17 c	4.12 <i>c</i>	7.29 c	43.6	38	409 a
50%	44 <i>b</i>	4.47 <i>b</i>	5.89 b	10.35 b	43.0	37	454 a
100%	32 <i>b</i>	5.30 <i>a</i>	6.42 <i>a</i>	11.72 <i>a</i>	45.0	39	496 <i>a</i>
MEAN	123	4.3	5.5	9.8	43.9	38	453
C.V. (%)	107.8	28.7	24.0	25.0	8.8	15.3	35.1
PR>F	<0.0001	<0.0001	<0.0001	<0.0001	0.1400	0.7800	0.0490
SE	15.50	0.148	0.156	0.291	0.46	0.7	18.8
LSD (0.05)	43	0.45	0.46	0.80	NS	NS	90

Notes:

♣ Indicates nutrients utilization efficiency

a Means followed by the same letter codes were not significantly different based on Tukey's test (P=0.05)

4.1.5 Residual Effect of Winter Rye Cover Crop - Different Seeding and NPK Fertilizer Rates on Canola

4.1.5 Kesidual Effect of winter	v i	lierent Sec	earng and N	PK Ferunzer	Rates on Car	101a		93			
PLANTING DATE:	June 2, 2020										
FERTILIZERS:	222 kg N/ha (435 kg/h		00 kg/ha 21-0-	<i>,</i>							
	$30 \text{ kg P}_2\text{O}_5/\text{ha}$ (67 kg/h	na 0-45-0)		24 kg S/ha (100 kg/ha 21-0-0-24)							
	30 kg K ₂ O/ha (50 kg/h	a 0-0-60)		1 kg Boron/ha (7 kg/ha 0-0-0-15)							
HERBICIDE:	None										
HARVEST DATE:	September 24, 2019										
PREVIOUS CROP:	Galega										
VARIETY:	L252										
			YIELD.								
	SEED 秦	SEED ^a	STRAW ^a	BIOMASS ^a	HARVEST	HEIGHT	DAY TO	LODGING ▼			
SEEDING RATE & NPK	kg/kg NUTRIENTS ^a		(MT/ha).		INDEX $(\%)^a$	$(\mathrm{cm})^{a}$	FLOWER ^{<i>a</i>}	<u>(0-9)</u>			
					<u></u>	<u> </u>		- <u>-</u>			
Fallow	11.2	3.43	7.04	10.47	33.4	117	43	0			
50% seeding rate + 0% NPK	11.2	3.43	7.46	10.89	33.1	120	45	0			
50% seeding rate + 50% NPK	13.8	4.24	9.31	13.55	32.5	116	46	0			
50% seeding rate + 100% NPK	11.4	3.50	6.51	10.01	35.2	115	46	0			
75% seeding rate + 0% NPK	10.6	3.26	4.73	7.99	40.5	118	46	0			
75% seeding rate + 50% NPK	9.3	2.87	5.31	8.18	35.2	120	45	0			
75% seeding rate + 100% NPK	12.9	3.95	8.08	12.03	34.7	116	46	0			
100% seeding rate + 0% NPK	12.0	3.69	5.88	9.57	38.6	119	45	0			
100% seeding rate + 50% NPK	12.4	3.82	7.84	11.66	33.2	116	46	0			
100% seeding rate + 100% NPK	10.7	3.28	5.71	9.00	37.0	119	43	0			
MEAN	11.(2 55	(70)	10.22	25.2	110	45	0			
	11.6	3.55	6.79	10.33	35.3	118	45 2 (0			
C.V. (%)	23.0	23.0	38.6	31.7	13.9	3.8	2.6	-			
PR>F	0.9660	0.9660	0.3860	0.4830	0.2040	0.8020	0.7850	-			
SE	0.42	0.129	0.415	0.519	0.78	0.7	0.2	-			
LSD (0.05)	NS	NS	NS	NS	NS	NS	NS	-			

Notes:

▼ Lodging is rated on the scale 0-9, where 0 = standing and 9 = flat.

♣ Indicates nutrients utilization efficiency.

Cont'd from previous page		••••	YIELD.							
	SEED 秦	SEED ^{<i>a</i>}	STRAW ^a	BIOMASS ^a	HARVEST	HEIGHT	DAY TO	LODGING ▼		
SEEDING RATE	kg/kg NUTRIENTS ^a	<u></u>	(MT/ha).	<u></u>	<u>INDEX (%)^a</u>	<u>(cm)</u> ^{<i>a</i>}	FLOWER ^b	<u>(0-9)</u>		
50%	12.1	3.72	7.76	11.48	33.6	117	45 a	0		
75%	10.9	3.36	6.04	9.40	36.8	118	46 <i>a</i>	0		
100%	11.6	3.56	6.62	10.17	35.6	118	44 <i>b</i>	0		
MEAN	11.5	3.55	6.81	10.35	35.3	118	45	0		
C.V. (%)	23.0	23.0	38.6	31.7	13.9	3.8	2.6	-		
PR>F	0.5730	0.5730	0.2750	0.3070	0.2780	0.7750	0.0020	-		
SE	0.42	0.129	0.415	0.519	0.78	0.7	0.2	-		
LSD (0.05)	NS	NS	NS	NS	NS	NS	2	-		
YIELD										
	SEED 秦	SEED ^a	STRAW ^a	BIOMASS ^a	HARVEST	HEIGHT	DAY TO	LODGING ▼		
<u>NPK</u>	<u>kg/kg NUTRIENTS ^a</u>	<u></u>	(MT/ha).	<u></u>	<u>INDEX (%)^a</u>	<u>(cm)</u> ^{<i>a</i>}	FLOWER ^b	<u>(0-9)</u>		
Fallow	11.2	3.43	7.04	10.47	33.4	117	43 <i>b</i>	0		
0%	11.3	3.46	6.02	9.48	37.4	119	45 a	0		
50%	11.9	3.64	7.49	11.13	33.6	117	46 a	0		
100%	11.7	3.58	6.77	10.35	35.6	117	45 a	0		
MEAN	11.5	3.53	6.83	10.36	35.0	118	45	0		
C.V. (%)	23.0	23.0	38.6	31.7	13.9	3.8	2.6	-		
PR>F	0.9500	0.9500	0.6200	0.7000	0.2500	0.6100	0.0007	-		
SE	0.42	0.129	0.415	0.519	0.78	0.7	0.2	-		
LSD (0.05)	NS	NS	NS	NS	NS	NS	2	-		

4.1.5 Residual Effect of Winter Rye Cover Crop - Different Seeding and NPK Fertilizer Rates on Canola

Notes:

V Lodging is rated on the scale 0-9, where 0 = standing and 9 = flat.

♣ Indicates nutrients utilization efficiency.

a Letter codes are not displayed for the means that were not affected by the treatments (P>0.05)

b Means followed by the same letter codes were not significantly different based on Tukey's test (P=0.05)

93 i

4.1.5 Residual Effect of Winter Rye Cover Crop - Different Seeding and NPK Fertilizer Rates on Canola Pre Canola Seeding Soil Test Results...Cont'd from previous page

	Organic	Phosphorus	Potassium	Magnesium	Calcium	Sodium		pН
SEEDING RATE & NPK	Matter	Bicarbonate	K ppm	Mg ppm	Ca ppm	Na ppm	pН	Buffer
Fallow	3.7	11 L	91 M	565 VH	2060 M	38 M	6.8	6.9
50% seeding rate + 0% NPK	3.8	8 VL	71 L	526 VH	1870 M	37 H	6.6	6.9
50% seeding rate + 50% NPK	3.8	12 L	86 M	550 VH	1930 M	34 M	6.6	6.9
50% seeding rate + 100% NPK	3.7	13 L	83 M	544 VH	1950 M	37 M	6.4	6.8
75% seeding rate + 0% NPK	3.7	14 L	81 M	565 VH	2020 M	36 M	6.7	6.9
75% seeding rate + 50% NPK	3.6	9 VL	73 L	595 VH	2040 M	38 M	6.5	6.9
75% seeding rate + 100% NPK	3.7	11 L	96 M	530 H	1900 L	32 M	6.4	6.7
100% seeding rate + 0% NPK	3.5	7 VL	70 L	549 VH	1920 M	39 H	6.7	6.9
100% seeding rate + 50% NPK	3.8	9 VL	78 L	537 VH	1930 M	35 M	6.8	6.8
100% seeding rate + 100% NPK	3.8	14 L	78 L	529 VH	1870 M	35 M	6.6	6.8

	CEC		Percen	t Base Solution	ns		Sulphur	Zinc
SEEDING RATE & NPK	meg/100g	% K	% Mg	% Ca	%Н	% Na	S ppm	Zn ppm
Fallow	16.5	1.4	28.5	62.3	6.9	1.0	13 VL	3.5 M
50% seeding rate + 0% NPK	15.2	1.2	28.8	61.4	7.5	1.1	7 VL	3.1 M
50% seeding rate + 50% NPK	15.7	1.4	29.1	61.3	7.2	0.9	7 VL	3.2 M
50% seeding rate + 100% NPK	17.0	1.3	26.7	57.4	13.8	0.9	7 VL	4.8 M
75% seeding rate + 0% NPK	16.3	1.3	28.9	61.9	7.0	1.0	7 VL	3.1 M
75% seeding rate + 50% NPK	16.6	1.1	29.8	61.3	6.8	1.0	6 VL	3.5 M
75% seeding rate + 100% NPK	17.8	1.4	24.8	53.2	19.8	0.8	6 VL	3.6 M
100% seeding rate + 0% NPK	15.7	1.1	29.2	61.3	7.3	1.1	7 VL	3.0 M
100% seeding rate + 50% NPK	16.8	1.2	26.6	57.4	13.9	0.9	7 VL	9.9 H
100% seeding rate + 100% NPK	16.5	1.2	26.8	56.8	14.2	0.9	6 VL	4.0 M

Note: VL=very low, L=low, M=medium, H=high, VH=very high, G=good

4.1.5 Residual Effect of Winter Rye Cover Crop - Different Seeding and NPK Fertilizer Rates on Canola Pre Canola Seeding Soil Test Results...Cont'd from previous page

	Manganese	Iron	Copper	Boron	Saturation	Aluminum	Saturation
<u>SEEDING RATE & NPK</u>	Mn ppm	Fe ppm	Cu ppm	B ppm	%P	Al ppm	%Al
Fallow	14 L	99 VH	1.6 H	0.4 L	4 L	824	0.1 G
50% seeding rate + 0% NPK	15 M	94 VH	1.4 H	0.4 L	3 L	820	0.2 G
50% seeding rate + 50% NPK	13 L	95 VH	1.5 H	0.4 L	3 L	811	0.2 G
50% seeding rate + 100% NPK	12 L	98 VH	1.5 H	0.4 L	4 L	851	0.2 G
75% seeding rate + 0% NPK	15 M	98 VH	1.6 H	0.4 L	3 L	829	0.2 G
75% seeding rate + 50% NPK	13 L	96 VH	1.6 H	0.5 L	3 L	871	0.2 G
75% seeding rate + 100% NPK	14 L	98 VH	1.5 H	0.4 L	3 L	855	0.2 G
100% seeding rate + 0% NPK	14 L	97 VH	1.6 H	0.3 VL	2 VL	814	0.2 G
100% seeding rate + 50% NPK	13 L	98 VH	1.5 H	0.4 L	4 L	847	0.1 G
100% seeding rate + 100% NPK	14 L	99 VH	1.5 H	0.4 L	4 L	836	0.2 G

	Nitrate N	NH4N	K/Mg	
<u>SEEDING RATE & NPK</u>	ppm	ppm	Ratio	ENR
Fallow	10 M	7	0.05	49
50% seeding rate + 0% NPK	6 L	7	0.04	50
50% seeding rate + 50% NPK	8 L	6	0.05	50
50% seeding rate + 100% NPK	9 L	7	0.05	49
75% seeding rate + 0% NPK	5 L	7	0.04	49
75% seeding rate + 50% NPK	8 L	6	0.04	48
75% seeding rate + 100% NPK	8 L	6	0.06	49
100% seeding rate + 0% NPK	4 VL		0.04	47
100% seeding rate + 50% NPK	6 L	7	0.05	50
100% seeding rate + 100% NPK	9 L	10	0.04	50

Note: VL=very low, L=low, M=medium, H=high, VH=very high, G=good

4.1.5 Residual Effect of Winter Rye Cover Crop - Different Seeding and NPK Fertilizer Rates on Canola Cont'd from previous page Avergaed Over 2019 - 2020

	YIELD							
	SEED 秦	SEED	STRAW	BIOMASS	HARVEST	HEIGHT	LODGING ▼	
SEEDING RATE & NPK	<u>kg/kg NUTRIENTS</u>	<u></u>	(MT/ha))	<u>INDEX (%)</u>	<u>(cm)</u>	<u>(0-9)</u>	
Fallow	16.7	4.84	8.47	13.31	36.0	126	0	
50% seeding rate + 0% NPK	16.6	4.82	8.85	13.67	35.6	129	0	
50% seeding rate + 50% NPK	17.8	5.19	9.96	15.14	34.8	126	0	
50% seeding rate + 100% NPK	15.4	4.47	7.78	12.26	36.8	126	0	
75% seeding rate + 0% NPK	15.2	4.42	7.11	11.53	39.0	131	0	
75% seeding rate + 50% NPK	14.0	4.07	7.54	11.61	35.3	126	0	
75% seeding rate + 100% NPK	17.8	5.18	9.70	14.88	35.3	125	0	
100% seeding rate + 0% NPK	15.1	4.41	7.67	12.08	36.8	127	0	
100% seeding rate + 50% NPK	16.9	4.90	9.51	14.41	34.0	123	0	
100% seeding rate + 100% NPK	15.6	4.52	7.78	12.31	36.9	128	0	
MEAN	16.1	4.68	8.44	13.12	36.1	127	0	

Notes:

♣ Indicates nutrients utilization efficiency.

4.1.5 Residual Effect of Winter Rye Cover Crop - Different Seeding and NPK Fertilizer Rates on Canola Avergaed Over 2019 - 2020...Cont'd from previous page

	YIELD										
	SEED 秦	SEED	STRAW	BIOMASS	HARVEST	HEIGHT					
SEEDING RATE	kg/kg NUTRIENTS	<u></u>	(MT/ha)	<u></u>	<u>INDEX (%)</u>	<u>(cm)</u>					
50%	18.9	5.38	9.42	14.79	36.8	132					
75%	18.1	5.16	9.15	14.31	36.4	132					
100%	17.9	5.12	9.24	14.36	35.7	130					
MEAN	18.3	5.22	9.27	14.49	36.3	131					
			YIELD								
	SEED 秦	SEED	STRAW	BIOMASS	HARVEST	HEIGHT					
<u>NPK</u>	<u>kg/kg NUTRIENTS</u>	<u></u>	(MT/ha)	<u></u>	<u>INDEX (%)</u>	<u>(cm)</u>					
Fallow	19.4	5.54	9.19	14.73	37.4	130					
0%	17.9	5.10	8.80	13.90	37.0	134					
50%	18.4	5.26	9.76	15.02	35.3	129					
100%	18.6	5.30	9.25	14.55	36.7	131					
MEAN	18.6	5.30	9.25	14.55	36.6	131					

Notes:

▼ Lodging is rated on the scale 0-9, where 0 = standing and 9 = flat.

♣ Indicates nutrients utilization efficiency.

Grain Legumes

Evaluation of NK21 as a Source of N and K for Soybean Production

		Soybcan i rouucio	11				
PLANTING DATE:	May 19, 2020						
FERTILIZER:	N and K as per treatments						
	30 kg P ₂ O ₅ /ha (67 kg/ha 0-45-0))					
	19.5 kg S/ha (115 kg/ha 0-0-0-1	17)					
PESTICIDE:	Roundup @ 3 L/ha applied pos	st - emergent; June 16,	2020				
HARVEST DATE:	September 25, 2020						
PREVIOUS CROP:	Malting Barley						
VARIETY:	25-10RY						
		GRAIN YIELD	100 K	HEIGHT	DAYS TO		
TREATMENTS		$(MT/ha)^{b}$	<u>WT. (g)</u> ^b	<u>(cm)</u> ^{<i>a</i>}	MATURE		
1. No N		5.33	22.2	90 <i>b</i>	120		
2. No K		4.57	20.3	94 <i>ab</i>	120		
3. No N or K (absolut	te control)	5.24	21.1	95 ab	120		
4. NK21 @ 21 kg N +	- 21 kg K ₂ O/ha	5.12	21.9	101 <i>a</i>	120		
5. NK21 @ 42 kg N +	- 42 kg K ₂ O/ha	5.15	23.0	98 a	120		
6. NK21 @ 63 kg N +	- 63 kg K ₂ O/ha	5.11	21.9	100 <i>a</i>	120		
7. NK21 @ 84 kg N -	+ 84 kg K ₂ O/ha	5.80	22.5	99 a	120		
8. Urea @ 21 kg N/h	a + MOP @ 21 kg K ₂ O/ha	5.75	20.6	98 a	120		
9. Urea @ 42 kg N/ha	$a + MOP @ 42 \text{ kg } \text{K}_2\text{O/ha}$	5.22	21.4	95 ab	120		
10. Urea @ 63 kg N/ł	$a + MOP @ 63 \text{ kg } \text{K}_2\text{O/ha}$	5.17	21.9	100 <i>a</i>	120		
11. Urea @ 84 kg N/h	$ha + MOP @ 84 kg K_2O/ha$	4.42	22.5	99 a	120		

11. Urea @ 84 kg N/ha + MOP @ 84 kg K ₂ O/ha	4.42	22.5	99 a	120	36.8
MEAN	5.17	21.8	97	120	43.1
C.V. (%)	18.9	6.5	4.2	-	18.9
PR>F	0.7300	0.1700	0.0004	-	0.7300
SE	0.147	0.21	0.6	-	1.23
LSD (0.05)	NS	NS	4	-	NS

Notes:

Pre seeding soil analysis 0-30 cm (ppm): Ammoniacal N: 5, Nitrate N: 6, Total N: 11

Pre seeding soil analysis 0-15 cm (ppm): K: 107

MOP: Muriate of Potash

a Means followed by the same letter codes were not significantly different based on Tukey's test (P=0.05)

b Letter codes not displayed for the means were not affected by the treatments (P>0.05)

YIELD/DAY

(kg/ha/day)

44.4 38.1

43.7

42.7 42.9

42.6

48.3

47.9

43.5

43.1

Evaluation of NK21 as a Source of N and K for Soybean Production Cont'd from previous page

SOURCE OF NITROGEN	GRAIN YIELD	100 K	HEIGHT	DAYS TO	YIELD/DAY
	<u>(MT/ha)^b</u>	WT. (g) ^b	$(\text{cm})^a$	<u>MATURE</u>	(kg/ha/day) ^b
No N	5.29	21.7	93 b	120	44.0
Urea	5.03	21.3	97 a	120	41.9
NK 21	5.30	22.3	100 a	120	44.1
Mean	5.20	21.8	96	120	43.4
			<i>.</i>	120	
C.V. (%)	18.9	6.5	4.2	-	18.9
PR>F	0.6600	0.1100	0.0001	-	0.6600
SE	0.147	0.21	0.6	-	1.23
LSD (0.05)	NS	NS	3	-	NS

NITROGEN	GRAIN YIELD	100 K	HEIGHT	DAYS TO	YIELD/DAY
<u>kg/ha</u>	<u>(MT/ha)</u> ^b	WT. (g) ^b	$(\text{cm})^a$	MATURE	(kg/ha/day) ^b
0	5.29	21.7	93 b	120	44.0
21	5.15	20.9	98 a	120	42.9
42	5.18	22.2	96 <i>ab</i>	120	43.2
63	5.14	21.9	100 a	120	42.8
84	5.11	22.5	99 a	120	42.6
Mean	5.17	21.9	97	120	43.1
C.V. (%)	18.9	6.5	4.2	-	18.9
PR>F	0.7500	0.0620	0.0017	-	0.7500
SE	0.147	0.21	0.6	-	1.23
LSD (0.05)	NS	NS	3	-	NS

Notes:

a Means followed by the same letter codes were not significantly different based on Tukey's test (P=0.05)

Evaluation of NK21 as a Source of N and K for Soybean Production... Cont'd from previous page

SOURCE OF K ₂ O	GRAIN YIELD	100 K	HEIGHT	DAYS TO	YIELD/DAY
	<u>(MT/ha)</u> ^b	<u>WT. (g)</u> ^{<i>a</i>}	<u>(cm)</u> ^{<i>a</i>}	MATURE	(kg/ha/day) ^b
No K ₂ O	4.91	20.7 b	95 b	120	40.9
Muriate of Potash	5.18	21.7 ab	96 b	120	43.1
NK 21	5.30	22.3 <i>a</i>	100 a	120	44.1
Mean	5.13	21.6	97	120	42.7
C.V. (%)	18.9	6.5	4.2	-	18.9
PR>F	0.6500	0.0260	0.0064	-	0.6500
SE	0.147	0.21	0.6	-	1.23
LSD (0.05)	NS	1.0	3	-	NS

K ₂ O	GRAIN YIELD	100 K	HEIGHT	DAYS TO	YIELD/DAY
<u>kg/ha</u>	<u>(MT/ha)</u> ^b	WT. (g) ^{<i>a</i>}	<u>(cm)</u> ^{<i>a</i>}	MATURE	(kg/ha/day) ^b
0	4.91	20.7 a	95 a	120	40.9
21	5.40	21.6 a	97 a	120	45.0
42	5.18	22.2 a	96 a	120	43.2
63	5.14	21.9 a	100 a	120	42.8
84	5.11	22.5 a	99 a	120	42.6
Mean	5.15	21.8	97	120	42.9
C.V. (%)	18.9	6.5	4.2	-	18.9
PR>F	0.9800	0.0130	0.0082	-	0.1100
SE	0.147	0.21	0.6	-	1.23
LSD (0.05)	NS	1.4	5	-	NS

Notes:

a Means followed by the same letter codes were not significantly different based on Tukey's test (P=0.05)

Evaluation of NK21 as a Source of N and K for Soybean Production Average Over 2018 - 2020

<u>TREATMENTS</u>	GRAIN YIELD (MT/ha) ^b	100 K <u>WT. (g) ^b</u>	$\frac{\text{(cm)}^{b}}{b}$	DAYS TO <u>MATURE</u>	YIELD/DAY <u>(kg/ha/day) ^b</u>
1. No N	3.49	18.4	83	128	27.8
2. No K	3.68	17.8	87	128	29.0
3. No N or K (absolute control)	3.89	18.4	86	128	30.7
4. NK21 @ 21 kg N + 21 kg K ₂ O/ha	3.82	18.9	89	128	30.2
5. NK21 @ 42 kg N + 42 kg K ₂ O/ha	3.88	19.1	89	128	30.6
6. NK21 @ 63 kg N + 63 kg K ₂ O/ha	3.92	18.7	90	128	30.9
7. NK21 @ 84 kg N + 84 kg K ₂ O/ha	4.03	19.0	92	128	31.9
8. Urea @ 21 kg N/ha + MOP @ 21 kg K ₂ O/ha	4.03	18.0	88	129	31.9
9. Urea @ 42 kg N/ha + MOP @ 42 kg K ₂ O/ha	4.04	18.9	89	128	31.9
10. Urea @ 63 kg N/ha + MOP @ 63 kg K ₂ O/ha	4.13	18.8	91	128	32.5
11. Urea @ 84 kg N/ha + MOP @ 84 kg K ₂ O/ha	3.64	19.3	93	128	28.6
MEAN	3.87	18.7	89	128	30.6
C.V. (%)	31.2	13.9	12.3	-	35.2
PR>F	0.9800	0.9700	0.6700	-	0.9900
SE	0.105	0.23	0.9	-	0.94
LSD (0.05)	NS	NS	NS	-	NS

Notes:

a Means followed by the same letter codes were not significantly different based on Tukey's test (P=0.05)

Evaluation of NK21 as a Source of N and K for Soybean Production Average Over 2018 - 2020...Cont'd from previous page

SOURCE OF NITROGEN	GRAIN YIELD	100 K	HEIGHT	DAYS TO	YIELD/DAY
	<u>(MT/ha)^b</u>	WT. (g) ^b	(cm) ^b	<u>MATURE</u>	(kg/ha/day) ^b
No N	3.69	18.4	85	128	29.3
Urea	3.90	18.6	89	128	30.8
NK 21	3.91	18.9	90	128	30.9
Mean	3.84	18.6	88	128	30.0
C.V. (%)	31.2	13.9	12.3	-	35.2
PR>F	0.7300	0.7100	0.1200	-	0.8100
SE	0.105	0.23	0.9	-	0.94
LSD (0.05)	NS	NS	NS	-	NS

NITROGEN	GRAIN YIELD	100 K	HEIGHT	DAYS TO	YIELD/DAY
<u>kg/ha</u>	<u>(MT/ha)</u> ^b	<u>WT. (g)</u> ^b	$(\text{cm})^{a}$	<u>MATURE</u>	(kg/ha/day) ^b
0	3.69	18.4	85 a	128	29.3
21	3.84	18.3	88 a	128	30.4
42	3.96	19.0	89 <i>a</i>	128	31.3
63	4.02	18.7	90 a	128	31.7
84	3.84	19.2	93 a	128	30.3
Mean	3.87	18.7	89	128	30.6
C.V. (%)	31.2	13.9	12.3	-	35.2
PR>F	0.5500	0.2100	0.0078	-	0.6300
SE	0.105	0.23	0.9	-	0.94
LSD (0.05)	NS	NS	5	-	NS

Notes:

a Means followed by the same letter codes were not significantly different based on Tukey's test (P=0.05)

Evaluation of NK21 as a Source of N and K for Soybean Production Average Over 2018 - 2020...Cont'd from previous page

SOURCE OF K ₂ O	GRAIN YIELD <u>(MT/ha)</u>	100 K <u>WT. (g)</u>	HEIGHT <u>(cm)</u>	DAYS TO <u>MATURE</u>	YIELD/DAY (kg/ha/day)
No K ₂ O	3.78	18.1	86	128	29.9
Muriate of Potash	3.86	18.7	89	128	30.5
NK 21	3.91	18.9	90	128	30.9
Mean	3.85	18.6	88	128	30.4
C.V. (%)	31.2	13.9	12.3	-	35.2
PR>F	0.9100	0.4900	0.3900	-	0.9300
SE	0.105	0.23	0.9	-	0.94
LSD (0.05)	NS	NS	NS	-	NS

K ₂ O	GRAIN YIELD	100 K	HEIGHT	DAYS TO	YIELD/DAY
<u>kg/ha</u>	<u>(MT/ha)</u>	<u>WT. (g)</u>	<u>(cm)</u>	MATURE	(kg/ha/day)
0	3.78	18.1	86 <i>a</i>	128	29.9
21	3.78	18.5	87 <i>a</i>	128	30.0
42	3.96	19.0	89 <i>a</i>	128	31.3
63	4.02	18.7	90 a	128	31.7
84	3.84	19.2	93 a	128	30.3
Mean	3.88	18.7	89	128	30.6
C.V. (%)	31.2	13.9	12.3	-	35.2
PR>F	0.6300	0.1600	0.0150	-	0.6900
SE	0.105	0.23	0.9	-	0.94
LSD (0.05)	NS	NS	7	-	NS

Notes:

a Means followed by the same letter codes were not significantly different based on Tukey's test (P=0.05)

4.2.2 Nitrogen and Sulphur Management for Lentil Production

PLANTING DATE:	May 9, 2020
FERTILIZERS:	N and S as per treatments
	20 kg P ₂ O ₅ /ha (45 kg/ha 0-45-0)
	20 kg K ₂ O/ha (33 kg/ha 0-0-60)
HERBICIDE:	Odyssey + Merge @ 43 g/ha applied post - emergent; June 3, 2020
HARVEST DATE:	August 25, 2020
PREVIOUS CROP:	Winter Rye
VARIETY	CDC Impulse

FACTOR	A X B	GRAIN \clubsuit ^b	GRAIN YIELD ^b	1000 K	TEST WT.
FACTOR A	FACTOR B	kg/kg NUTRIENTS	<u>(MT/ha)</u>	<u>WT.(g)</u>	<u>(kg/hl)</u>
1. Check (Zero N)	0 kg S/ha	14.5	0.58	51	71
2. 22.5 kg N/ha	0 kg S/ha	11.0	0.68	54	71
3. 45 kg N/ha	0 kg S/ha	9.3	0.79	50	71
4. 0 kg N/ha	8 kg S/ha	13.1	0.63	48	70
5. 22.5 kg N/ha	8 kg S/ha	10.1	0.71	48	71
6. 45 kg N/ha	8 kg S/ha	9.4	0.88	50	71
7. 0 kg N/ha	16 kg S/ha	11.2	0.63	50	71
8. 22.5 kg N/ha	16 kg S/ha	8.8	0.69	48	70
9. 45 kg N/ha	16 kg S/ha	6.9	0.70	53	70
10. 0 kg N/ha	24 kg S/ha	6.4	0.41	51	70
11. 22.5 kg N/ha	24 kg S/ha	7.7	0.67	50	71
12. 45 kg N/ha	24 kg S/ha	9.0	0.98	53	71
MEAN		9.8	0.70	50.50	70.63
C.V. (%)		45.1	42.9	-	-
PR>F - A		0.2240	0.0515	-	-
PR>F - B		0.1330	0.9514	-	-
PR>F - (A x B)		0.6580	0.8114	-	-
SE		0.64	0.043	-	-
LSD (0.05)		NS	NS	-	-

Notes:

♣Indicates nutrients utilization efficiency

N was supplied through urea; Sulphur was supplied through gypsum

Pre seeding soil analysis 0-30 cm (ppm): Ammoniacal N: 6, Nitrate N: 9, Total N: 15 and S: 6

a Means followed by the same letter codes were not significantly different based on Tukey's test (P=0.05)

4.2.2 Nitrogen and Sulphur Management for Lentil Production Cont'd from Previous page

	GRAIN \clubsuit^{b}	GRAIN YIELD ^b	1000 K	TEST WT.
FACTOR A	kg/kg NUTRIENTS	<u>(MT/ha)</u>	<u>WT.(g)</u>	<u>(kg/hl)</u>
1. Check (Zero N)	11.3	0.56	50	71
2. 22.5 kg N/ha	9.4	0.69	50	71
3. 45 kg N/ha	8.7	0.84	52	71
MEAN	9.8	0.70	51	71
C.V. (%)	45.1	42.9	-	-
PR>F - A	0.2240	0.0515	-	-
SE	0.64	0.043	-	-
LSD (0.05)	NS	NS	-	-
	1	,		
	GRAIN \clubsuit^{b}	GRAIN YIELD ^b	1000 K	TEST WT.
FACTOR B	GRAIN ♣ ^b kg/kg NUTRIENTS	GRAIN YIELD ^b (<u>MT/ha)</u>	1000 K <u>WT.(g)</u>	TEST WT. <u>(kg/hl)</u>
	<u>kg/kg NUTRIENTS</u>	<u>(MT/ha)</u>	<u>WT.(g)</u>	<u>(kg/hl)</u>
1. Zero S	<u>kg/kg NUTRIENTS</u> 11.6	<u>(MT/ha)</u> 0.68	<u>WT.(g)</u> 52	<u>(kg/hl)</u> 71
1. Zero S 2. 8 kg S/ha	<u>kg/kg NUTRIENTS</u> 11.6 10.9	<u>(MT/ha)</u> 0.68 0.74	<u>WT.(g)</u> 52 49	<u>(kg/hl)</u> 71 71
1. Zero S 2. 8 kg S/ha 3. 16 kg S/ha	kg/kg NUTRIENTS 11.6 10.9 9.0	<u>(MT/ha)</u> 0.68 0.74 0.67	<u>WT.(g)</u> 52 49 50	<u>(kg/hl)</u> 71 71 70
1. Zero S 2. 8 kg S/ha	<u>kg/kg NUTRIENTS</u> 11.6 10.9	<u>(MT/ha)</u> 0.68 0.74	<u>WT.(g)</u> 52 49	<u>(kg/hl)</u> 71 71
1. Zero S 2. 8 kg S/ha 3. 16 kg S/ha 4. 24 kg S/ha	kg/kg NUTRIENTS 11.6 10.9 9.0 7.7	<u>(MT/ha)</u> 0.68 0.74 0.67 0.68	<u>WT.(g)</u> 52 49 50 51	<u>(kg/hl)</u> 71 71 70 71
 Zero S 8 kg S/ha 16 kg S/ha 24 kg S/ha 	kg/kg NUTRIENTS 11.6 10.9 9.0 7.7 9.8	(MT/ha) 0.68 0.74 0.67 0.68 0.70	<u>WT.(g)</u> 52 49 50	<u>(kg/hl)</u> 71 71 70
 Zero S 8 kg S/ha 16 kg S/ha 24 kg S/ha MEAN C.V. (%) 	kg/kg NUTRIENTS 11.6 10.9 9.0 7.7 9.8 45.1	(MT/ha) 0.68 0.74 0.67 0.68 0.70 42.9	<u>WT.(g)</u> 52 49 50 51	<u>(kg/hl)</u> 71 71 70 71
1. Zero S 2. 8 kg S/ha 3. 16 kg S/ha 4. 24 kg S/ha MEAN C.V. (%) PR>F - B	kg/kg NUTRIENTS 11.6 10.9 9.0 7.7 9.8 45.1 0.1330	(MT/ha) 0.68 0.74 0.67 0.68 0.70 42.9 0.9514	<u>WT.(g)</u> 52 49 50 51	<u>(kg/hl)</u> 71 71 70 71
 Zero S 8 kg S/ha 16 kg S/ha 24 kg S/ha MEAN C.V. (%) 	kg/kg NUTRIENTS 11.6 10.9 9.0 7.7 9.8 45.1	(MT/ha) 0.68 0.74 0.67 0.68 0.70 42.9	<u>WT.(g)</u> 52 49 50 51	<u>(kg/hl)</u> 71 71 70 71

Notes:

♣Indicates nutrients utilization efficiency

a Means followed by the same letter codes were not significantly different based on Tukey's test (P=0.05)

4.2.2 Nitrogen and Sulphur Management for Lentil Production Averaged over 2019 - 2020

FACTOR	A X B	GRAIN 秦	GRAIN YIELD	1000 K	TEST WT.
FACTOR A	FACTOR B	<u>kg/kg NUTRIENTS</u>	<u>(MT/ha)</u>	<u>WT.(g)</u>	<u>(kg/hl)</u>
		• ((• • • •		
1. Check (Zero N)	0 kg S/ha	26.6	2.03	47	72
2. 22.5 kg N/ha	0 kg S/ha	17.1	1.65	47	73
3. 45 kg N/ha	0 kg S/ha	14.5	1.72	47	72
4. 0 kg N/ha	8 kg S/ha	21.6	1.79	48	72
5. 22.5 kg N/ha	8 kg S/ha	16.9	1.78	45	72
6. 45 kg N/ha	8 kg S/ha	14.8	1.87	47	72
7. 0 kg N/ha	16 kg S/ha	20.5	1.89	48	72
8. 22.5 kg N/ha	16 kg S/ha	15.8	1.80	45	71
9. 45 kg N/ha	16 kg S/ha	11.1	1.51	48	70
10. 0 kg N/ha	24 kg S/ha	14.9	1.54	49	72
11. 22.5 kg N/ha	24 kg S/ha	13.5	1.65	48	72
12. 45 kg N/ha	24 kg S/ha	12.6	1.77	48	72
MEAN		16.6	1.75	47	72

Notes:

♣Indicates nutrients utilization efficiency

N was supplied through urea; Sulphur was supplied through gypsum

4.2.2 Nitrogen and Sulphur Management for Lentil Production Averaged Over 2019 - 2020...Cont'd from Previous page

FACTOR A	GRAIN ♣ ^a <u>kg/kg NUTRIENTS</u>	GRAIN YIELD ^b (<u>MT/ha)</u>	1000 K <u>WT.(g)</u>	TEST WT. <u>(kg/hl)</u>
1. Check (Zero N)	20.9	1.81	48	72
2. 22.5 kg N/ha	15.8	1.72	46	72
3. 45 kg N/ha	13.2	1.72	47	71
MEAN	16.6	1.75	47	72

	GRAIN 秦	GRAIN YIELD	1000 K	TEST WT.
FACTOR B	<u>kg/kg NUTRIENTS</u>	<u>(MT/ha)</u>	<u>WT.(g)</u>	<u>(kg/hl)</u>
1. Zero S	19.4	1.80	47	72
2. 8 kg S/ha	17.7	1.81	47	72
3. 16 kg S/ha	15.8	1.73	47	71
4. 24 kg S/ha	13.7	1.65	49	72
MEAN	16.63	1.75	47	72

Notes:

♣Indicates nutrients utilization efficiency

4.2.3 Phosphorus and Potassium Management for Lentil Production

PLANTING DATE:	May 9, 2020
FERTILIZERS:	P and K as per treatments
	45 kg N/ha (71 kg/ha 21-0-0-24, 65 kg/ha 46-0-0)
	17 kg S/ha (71 kg/ha 21-0-0-24)
HERBICIDE:	Odyssey + Merge @ 43 g/ha applied post - emergent; June 3, 2020
HARVEST DATE:	August 25, 2020
PREVIOUS CROP:	Soybeans

FACTOR	A X B	GRAIN \clubsuit ^b	GRAIN YIELD ^b	1000 K
FACTOR A	FACTOR B	<u>kg/kg NUTRIENTS</u>	<u>(MT/ha)</u>	<u>WT.(g)</u>
1. 0 kg P ₂ O ₅ /ha	0 kg K ₂ O/ha	8.2	0.51	44
2. 20 kg P ₂ O ₅ /ha	0 kg K ₂ O/ha	10.2	0.84	46
3. 40 kg P ₂ O ₅ /ha	0 kg K ₂ O/ha	6.7	0.69	47
4.0 kg P ₂ O ₅ /ha	20 kg K ₂ O/ha	8.3	0.68	44
5. 20 kg P ₂ O ₅ /ha	$20 \text{ kg K}_2\text{O/ha}$	5.4	0.55	45
6. 40 kg P ₂ O ₅ /ha	20 kg K ₂ O/ha	5.3	0.64	49
7. 0 kg P ₂ O ₅ /ha	40 kg K ₂ O/ha	4.6	0.47	48
8. 20 kg P ₂ O ₅ /ha	40 kg K ₂ O/ha	4.3	0.53	45
9. 40 kg P ₂ O ₅ /ha	$40 \text{ kg } \text{K}_2\text{O/ha}$	3.3	0.47	46
MEAN		6.3	0.60	46
C.V. (%)		48.3	40.2	-
PR>F - A		0.0870	0.6339	-
PR>F - B		0.0002	0.0962	-
$PR > F - (A \times B)$		0.2562	0.3300	-
SE		0.50	0.040	-
LSD (0.05)		NS	NS	-

Notes:

♣Indicates nutrients utilization efficiency

Pre seeding soil analysis 0-30 cm (ppm): P: 16; K: 126

Test wt. was not taken due to poor yeild

a Means followed by the same letter codes were not significantly different based on Tukey's test (P=0.05)

4.2.3 Phosphorus and Potassium Management for Lentil Production Cont'd from Previous page

FACTOR A	GRAIN ♣ ^b <u>kg/kg NUTRIENTS</u>	GRAIN YIELD ^b (<u>MT/ha)</u>	1000 K <u>WT.(g)</u>
1. 0 kg P ₂ O ₅ /ha	7.1	0.55	45
2. 20 kg P ₂ O ₅ /ha	6.6	0.64	45
3. 40 kg P ₂ O ₅ /ha	5.1	0.60	47
MEAN	6.3	0.60	46
C.V. (%)	48.3	40.2	-
PR>F - A	0.0870	0.6339	-
SE	0.50	0.040	-
LSD (0.05)	NS	NS	-

	GRAIN \bigstar^a	GRAIN YIELD ^b	1000 K
FACTOR B	<u>kg/kg NUTRIENTS</u>	<u>(MT/ha)</u>	<u>WT.(g)</u>
1. 0 kg K ₂ O/ha	8.4 <i>a</i>	0.68	46
2. 20 kg K ₂ O/ha	6.3 <i>a</i>	0.63	46
3. 40 kg K ₂ O/ha	4.1 <i>b</i>	0.49	46
MEAN	6.3	0.60	46
C.V. (%)	48.3	40.2	-
PR>F - B	0.0002	0.0962	-
SE	0.50	0.040	-
LSD (0.05)	1.8	NS	-

Notes:

♣Indicates nutrients utilization efficiency

Test wt. was not taken due to poor yeild

a Means followed by the same letter codes were not significantly different based on Tukey's test (P=0.05)

4.2.3 Phosphorus and Potassium Management for Lentil Production Averaged over 2019 - 2020

FACTOR	A X B	GRAIN \bigstar^a	GRAIN YIELD ^b	1000 K
FACTOR A	FACTOR B	<u>kg/kg NUTRIENTS</u>	<u>(MT/ha)</u>	<u>WT.(g)</u>
1.0 kg P_2O_5/ha	0 kg K ₂ O/ha	20.7	1.28	44
2. 20 kg P ₂ O ₅ /ha	0 kg K ₂ O/ha	17.7	1.46	45
3. 40 kg P ₂ O ₅ /ha	0 kg K ₂ O/ha	14.3	1.46	47
4.0 kg P ₂ O ₅ /ha	20 kg K ₂ O/ha	20.0	1.64	45
5. 20 kg P_2O_5/ha	20 kg K ₂ O/ha	11.4	1.16	44
6. 40 kg P ₂ O ₅ /ha	$20 \text{ kg K}_2\text{O/ha}$	11.9	1.45	48
7. 0 kg P ₂ O ₅ /ha	$40 \text{ kg K}_2\text{O/ha}$	14.0	1.43	46
8. 20 kg P ₂ O ₅ /ha	40 kg K ₂ O/ha	9.5	1.16	44
9. 40 kg P ₂ O ₅ /ha	$40 \text{ kg } \text{K}_2\text{O/ha}$	8.1	1.15	44
MEAN		14.2	1.36	45

Notes:

♣Indicates nutrients utilization efficiency

Test wt. was not taken in 2020 due to poor yeild

4.2.3 Phosphorus and Potassium Management for Lentil Production Averaged Over 2019 - 2020...Cont'd from Previous page

FACTOR A	GRAIN ♣ ^a <u>kg/kg NUTRIENTS</u>	GRAIN YIELD ^b <u>(MT/ha)</u>	1000 K <u>WT.(g)</u>
1.0 kg P ₂ O ₅ /ha	18.1	1.41	45
2. 20 kg P ₂ O ₅ /ha	12.7	1.23	45
3. 40 kg P ₂ O ₅ /ha	11.4	1.33	46
MEAN	14.1	1.32	45

FACTOR B	GRAIN ♣ ^a <u>kg/kg NUTRIENTS</u>	GRAIN YIELD ^b (<u>MT/ha)</u>	1000 K <u>WT.(g)</u>
1.0 kg K ₂ O/ha	17.6	1.40	46
2. 20 kg K ₂ O/ha	14.4	1.42	46
3. 40 kg K ₂ O/ha	10.6	1.25	45
MEAN	14.2	1.36	45

Notes:

♣Indicates nutrients utilization efficiency Test wt. was not taken in 2020 due to poor yeild **Oil Seeds**

4.3.1 Response of Canola to High Rates of N Application from Different Sources

May 18, 2020	
N as per treatments	
20 kg P ₂ O ₅ /ha (44 kg/ha 0-45-0)	7 kg Zn/ha (35 kg/ha 0-0-0-16-20)
20 kg K ₂ O/ha (33 kg/ha 0-0-60)	1 kg B/ha (7 kg/ha 0-0-0-15)
36 kg S/ha (182 kg/ha 0-0-0-17, 35 kg	/ha 0-0-0-16-20)
Liberty @ 3 L/ha applied; June 8, and	June 18, 2020
September 1, 2020	
Winter wheat	
L252	
	N as per treatments 20 kg P_2O_5 /ha (44 kg/ha 0-45-0) 20 kg K_2O /ha (33 kg/ha 0-0-60) 36 kg S/ha (182 kg/ha 0-0-0-17, 35 kg Liberty @ 3 L/ha applied; June 8, and September 1, 2020 Winter wheat

.....YIELD.....

						•••••			
<u>Trt</u>	Nitro	gen (kg	; N/ha) from:	Total N	SEED 秦	SEED ^a	STRAW ^b	BIOMASS ^b	HARVEST
<u>111</u>	Urea	ESN	Urea SuperU		kg/kg NUTRIENTS ^b	<u></u>	(MT/ha)	<u></u>	<u>INDEX (%) ^b</u>
			Ĩ						
1	0	0	0	0	14.3	1.29 c	4.98	6.26	21.0
2	90	0	0	90	17.2	3.10 <i>abc</i>	5.60	8.70	35.9
3	180	0	0	180	12.8	3.47 <i>abc</i>	6.94	10.41	35.4
4	270	0	0	270	12.9	4.63 a	8.93	13.55	34.6
5	360	0	0	360	7.0	3.16 <i>abc</i>	5.32	8.47	37.4
6	60	30	0	90	16.6	2.98 abc	6.09	9.07	32.9
7	120	60	0	180	12.9	3.47 <i>abc</i>	5.17	8.64	40.2
8	180	90	0	270	11.0	3.97 <i>ab</i>	6.82	10.79	40.0
9	240	120	0	360	8.4	3.78 ab	4.67	8.46	48.6
10	0	0	90	90	12.9	2.32 abc	5.24	7.57	30.9
11	0	0	180	180	12.0	3.25 <i>abc</i>	6.75	10.00	33.5
12	0	0	270	270	9.5	3.43 <i>abc</i>	6.97	10.40	32.7
13	0	0	360	360	9.5	4.28 ab	8.10	12.38	35.5
14	60	0	30	90	11.7	2.11 bc	4.26	6.37	34.0
15	120	0	60	180	12.1	3.27 <i>abc</i>	5.92	9.19	35.1
16	180	0	90	270	10.0	3.60 abc	6.62	10.22	36.2
17	240	0	120	360	9.3	4.17 <i>ab</i>	5.65	9.82	43.5
18	60	60	60	180	16.8	4.53 ab	6.96	11.49	39.5
	MEAN				12.1	3.38	6.17	9.54	35.9
	C.V. (%)			28.1	29.2	33.0	27.3	25.9
	PR>F	/			0.0629	0.0123	0.8000	0.2600	0.0820
	SE				0.40	0.116	0.240	0.307	1.10
	LSD (0.	05)			NS	1.30	NS	NS	NS

NOTES:

Pre seeding soil analysis 0-30 cm (ppm): Ammoniacal N: 13, Nitrate N: 13, Total N: 26, and S: 6 Trt: Treatment

♣ Indicates nutrients utilization efficiency.

a Means followed by the same letter codes were not significantly different based on Tukey's test (P=0.05)

4.3.1 Response of Canola to High Rates of N Application from Different Sources Cont'd from previous page

	Nitro	ogen (kg	N/ha) from:	Total N	HEIGHT	DAY	YS TO	LODGING♠
Trt	Urea	ESN	Urea SuperU	(kg N/ha)	<u>(cm)</u>	FLOWER ^a	MATURE ^a	(0-9)
1	0	0	0	0	108	45 <i>b</i>	106 <i>b</i>	0
2	90	0	0	90	123	45 <i>b</i>	106 <i>b</i>	0
3	180	0	0	180	125	45 <i>b</i>	106 <i>b</i>	0
4	270	0	0	270	123	46 <i>ab</i>	107 ab	0
5	360	0	0	360	125	45 <i>b</i>	106 <i>b</i>	0
6	60	30	0	90	121	46 <i>ab</i>	107 <i>ab</i>	0
7	120	60	0	180	124	46 <i>ab</i>	107 <i>ab</i>	0
8	180	90	0	270	129	45 <i>b</i>	106 <i>b</i>	0
9	240	120	0	360	123	46 <i>ab</i>	107 <i>ab</i>	0
10	0	0	90	90	124	45 <i>b</i>	106 <i>b</i>	0
11	0	0	180	180	119	45 <i>b</i>	106 <i>b</i>	0
12	0	0	270	270	120	46 <i>ab</i>	107 <i>ab</i>	0
13	0	0	360	360	130	47 <i>a</i>	108 a	0
14	60	0	30	90	117	45 <i>b</i>	106 <i>b</i>	0
15	120	0	60	180	123	46 <i>ab</i>	107 <i>ab</i>	0
16	180	0	90	270	128	46 <i>ab</i>	107 <i>ab</i>	0
17	240	0	120	360	130	46 <i>ab</i>	107 <i>ab</i>	0
18	60	60	60	180	136	45 b	106 <i>b</i>	0
	MEAN				124	46	107	0
	C.V. (%)			-	1.4	0.6	-
	PR>F	,			-	0.0150	0.0150	-
	SE				-	0.1	0.1	-
	LSD (0.	05)			-	0.88	0.88	-

NOTES:

Trt: Treatments

a Letter codes not displayed for the means were not affected by the treatments (P>0.05)

4.3.1 Response of Canola to High Rates of N Application from Different Sources

Cont'd from previous page

N RATE	SEED \bigstar^{b}	SEED ^a	STRAW ^b	BIOMASS ^b	HARVEST	HEIGHT	DAYS TO
<u>kg N/ha</u>	<u>kg/kg NUTRIENTS</u>	<u></u>	.Yield (MT/ha	u <u>)</u>	<u>INDEX (%)</u> ^b	<u>(cm)</u>	FLOWER ^a
0	14.3	1.29 <i>b</i>	4.98	6.26	21.0	108	45 a
90	12.5	3.59 a	6.69	10.28	35.8	124	45 a
180	12.4	3.31 <i>a</i>	5.60	8.91	38.5	124	46 <i>a</i>
270	10.7	3.27 a	6.52	9.79	33.9	122	46 <i>a</i>
360	12.0	3.89 a	6.29	10.18	38.6	129	46 a
MEAN	12.4	3.07	6.02	9.08	33.6	121	46
C.V. (%)	28.1	29.2	33.0	27.3	25.9	-	1.4
PR>F	0.1800	0.0046	0.6100	0.1500	0.0680	-	
SE	0.40	0.116	0.240	0.307	1.10	-	0.1
LSD (0.05)	NS	0.88	NS	NS	NS	-	1
	SEED \bigstar ^{<i>a</i>}	SEED ^b	STRAW ^b	BIOMASS ^b	HARVEST	HEIGHT	DAYS TO
N SOURCE	kg/kg NUTRIENTS				<u>INDEX (%)</u> ^b	<u>(cm)</u>	FLOWER ^b
		<u></u>		<u></u>		·	
Urea	12.5 ab	3.59	6.69	10.28	35.8	124	45
Urea Urea+ESN (2:1 on N basis)	12.5 ab		·			,-	45 46
	12.5 ab	3.59	6.69	10.28	35.8	124	
Urea+ESN (2:1 on N basis)	12.5 <i>ab</i> 12.2 <i>ab</i>	3.59 3.55	6.69 5.69	10.28 9.24	35.8 40.4	124 124	46
Urea+ESN (2:1 on N basis) Urea SuperU	12.5 <i>ab</i> 12.2 <i>ab</i> 11.0 <i>b</i> 10.8 <i>b</i>	3.59 3.55 3.32	6.69 5.69 6.77	10.28 9.24 10.09	35.8 40.4 33.1	124 124 123	46 46
Urea+ESN (2:1 on N basis) Urea SuperU Urea+Urea SuperU 2:1	12.5 <i>ab</i> 12.2 <i>ab</i> 11.0 <i>b</i> 10.8 <i>b</i>	3.59 3.55 3.32 3.29	6.69 5.69 6.77 5.61	10.28 9.24 10.09 8.90	35.8 40.4 33.1 37.2	124 124 123 124	46 46 46
Urea+ESN (2:1 on N basis) Urea SuperU Urea+Urea SuperU 2:1 Urea+ESN+Urea SuperU ³	12.5 <i>ab</i> 12.2 <i>ab</i> 11.0 <i>b</i> 10.8 <i>b</i> 16.8 <i>a</i>	3.59 3.55 3.32 3.29 4.53	6.69 5.69 6.77 5.61 6.96	10.28 9.24 10.09 8.90 11.49	35.8 40.4 33.1 37.2 39.5	124 124 123 124 136	46 46 46 45
Urea+ESN (2:1 on N basis) Urea SuperU Urea+Urea SuperU 2:1 Urea+ESN+Urea SuperU ³ MEAN	12.5 <i>ab</i> 12.2 <i>ab</i> 11.0 <i>b</i> 10.8 <i>b</i> 16.8 <i>a</i> 12.6	3.59 3.55 3.32 3.29 4.53 3.7	6.69 5.69 6.77 5.61 6.96 6.3	10.28 9.24 10.09 8.90 11.49 10.0	35.8 40.4 33.1 37.2 39.5 37.2	124 124 123 124 136	46 46 46 45 46
Urea+ESN (2:1 on N basis) Urea SuperU Urea+Urea SuperU 2:1 Urea+ESN+Urea SuperU ³ MEAN C.V. (%)	12.5 <i>ab</i> 12.2 <i>ab</i> 11.0 <i>b</i> 10.8 <i>b</i> 16.8 <i>a</i> 12.6 28.4	3.59 3.55 3.32 3.29 4.53 3.7 24.8	6.69 5.69 6.77 5.61 6.96 6.3 32.8	10.28 9.24 10.09 8.90 11.49 10.0 25.8	35.8 40.4 33.1 37.2 39.5 37.2 23.9	124 124 123 124 136 127	46 46 45 46 1.4

NOTES: ♣ Indicates nutrients utilization efficiency. *Each @ 60 kg N/ha

a Means followed by the same letter codes were not significantly different based on Tukey's test (P=0.05)

4.3.1 Response of Canola to High Rates of N Application from Different Sources Cont'd from previous page Averaged over 2019 - 2020

							YIELD.		
Tert	Nitrogen (kg N/ha) from:			Total N	SEED 秦	SEED	STRAW	BIOMASS	HARVEST
<u>Trt</u>	Urea		Urea SuperU	(kg N/ha)	<u>kg/kg NUTRIENTS</u>	<u></u>	(MT/ha)	· · · · · · · · · · · · · · · · · · ·	<u>INDEX (%)</u>
1	0	0	0	0	18.0	3.41	6.29	9.70	31.6
2	90	0	0	90	17.2	4.23	6.54	10.77	38.8
3	180	0	0	180	18.3	4.00	7.01	11.01	37.2
4	270	0	0	270	16.9	4.78	7.71	12.49	38.9
5	360	0	0	360	11.3	4.07	6.58	10.65	38.1
6	60	30	0	90	21.4	3.79	6.35	10.14	37.1
7	120	60	0	180	15.9	4.78	6.96	11.75	40.6
8	180	90	0	270	13.7	4.46	7.40	11.85	39.3
9	240	120	0	360	11.9	4.29	5.83	10.13	44.7
10	0	0	90	90	17.4	3.64	6.05	9.69	36.5
11	0	0	180	180	14.9	3.98	6.53	10.52	38.1
12	0	0	270	270	15.8	4.48	7.29	11.77	37.5
13	0	0	360	360	16.1	5.05	8.72	13.78	37.4
]	MEAN				16.1	4.23	6.87	11.10	38.1

NOTES:

Trt: Treatment

♣ Indicates nutrients utilization efficiency.

4.3.1 Response of Canola to High Rates of N Application from Different Sources Cont'd from previous page Averaged over 2019 - 2020

	Nitro	ogen (kg	N/ha) from:	Total N	HEIGHT	DAYS TO	LODGING♠
Trt	Urea	ESN	Urea SuperU	(kg N/ha)	<u>(cm)</u>	FLOWER	(0-9)
1	0	0	0	0	113	50	0
2	90	0	0	90	123	50	0
3	180	0	0	180	122	49	0
4	270	0	0	270	121	50	0
5	360	0	0	360	122	50	0
6	60	30	0	90	119	50	0
7	120	60	0	180	121	50	0
8	180	90	0	270	122	50	0
9	240	120	0	360	120	50	0
10	0	0	90	90	124	50	0
11	0	0	180	180	118	49	0
12	0	0	270	270	115	51	0
13	0	0	360	360	122	51	0
	MEAN				120	50	0

NOTE:

Trt: Treatment

4.3.1 Response of Canola to High Rates of N Application from Different Sources Cont'd from previous page Averaged Over 2019 - 2020

N RATE	SEED 秦	SEED	STRAW	BIOMASS	HARVEST	HEIGHT	DAYS TO
<u>kg N/ha</u>	<u>kg/kg NUTRIENTS</u>	<u></u>	Yield (MT	/ha)	<u>INDEX (%)</u>	<u>(cm)</u>	FLOWER
_			<				-
0	18.0	3.41	6.29	9.70	31.6	113	50
90	18.7	3.89	6.31	10.20	37.4	122	50
180	16.4	4.25	6.84	11.09	38.6	121	50
270	15.5	4.57	7.47	12.04	38.6	120	50
360	13.1	4.47	7.05	11.52	40.1	121	50
MEAN	16.3	4.12	6.79	10.91	37.3	119	50
	SEED 🛧	SEED	STRAW	BIOMASS	HARVEST	HEIGHT	DAYS TO
N SOURCE	<u>kg/kg NUTRIENTS</u>	<u></u>	Yield (MT	<u>/ha)</u>	<u>INDEX (%)</u>	<u>(cm)</u>	FLOWER
Urea	15.9	4.27	6.96	11.23	38.3	122	50
Urea+ESN 2:1*	15.7	4.33	6.64	10.97	40.4	120	50
Urea SuperU	16.1	4.29	7.15	11.44	37.4	120	50

MEAN 15.9 4.30 6.92 11.21 38.7 121

NOTES:

♣ Indicates nutrients utilization efficiency.

*On N basis

50

<u>Trt #</u>	PRODUCT	CROP STAGE/TIME OF APPLICATION	RATE OF APPLICATION
1	Farmers' practice	At seeding	See Footnote
2	TOP PHOS	At seeding	See Footnote
3	FA STARTER	BBCH 12-13 (2-3 leaves)	3 L/ha
4	IRYS	BBCH 12-13 (2-3 leaves)	3 L/ha
5	FL GOLD	BBCH 19-31 (End cabbage- beginning bolt)	3 L/ha
6	GENEA	BBCH 19-31 (End cabbage- beginning bolt)	3 L/ha
7	FL GOLD	BBCH 65 (First petals falling)	3 L/ha
8	GENEA	BBCH 65 (First petals falling)	3 L/ha
9	APEX	Replace N application during crop cycle	See Footnote
10	EXCELIS MAXX	Applied to urea	See Footnote

Trt # TREATMENT DETAILS OF FERTILIZERS/PRODUCTS

- 1 180 kg N/ha (92 kg from urea, 46 kg from ESN & 42 kg from ammonium sulphate) Farmers' Practice
- ² 180 kg N/ha (90.3 kg from urea, 45.2 kg from ESN & 39.2 kg from ammonium sulphate, 5.3 from Top Phos), P from Top Phos•
- 3 180 kg N/ha (92 kg from urea, 46 kg from ESN & 42 kg from ammonium sulphate); FA Starter @ 31/ha at 2-3 leaves
- 4 180 kg N/ha (92 kg from urea, 46 kg from ESN & 42 kg from ammonium sulphate); IRYS @ 31/ha at 2-3 leaves
- 5 180 kg N/ha (92 kg from urea, 46 kg from ESN & 42 kg from ammonium sulphate); FL Gold 31/ha at beginning bolting
- 6 180 kg N/ha (92 kg from urea, 46 kg from ESN & 42 kg from ammonium sulphate) Genea 31/ha at beginning bolting
- 7 180 kg N/ha (92 kg from urea, 46 kg from ESN & 42 kg from ammonium sulphate); FL Gold 31/ha at first petal falling
- 8 180 kg N/ha (92 kg from urea, 46 kg from ESN & 42 kg from ammonium sulphate); Genea 31/ha at first petal falling
- 9 180 kg N/ha from Apex*
- 10 180 kg N/ha from urea treated with EXCELIS MAXX

Notes:

All treatments received 180 kg N/ha, 20 kg P2O5/ha (1, 3-10 from 0-45-0, 2 from Top Phos), 20 kg K2O/ha from 0-0-60,

48 kg S/ha (1-8 from ammonium sulphate, 9 from Apex and 10 from gypsum except that in treatment 2, in which 3.2 kg out of 48 kg S came from Top Phos), and 1 kg B/ha. All fertilizer nutrients were applied at seeding.

[•]Top Phos is 8-30-0-4.8 (8 % N, 30 % P₂O₅, 0 % K₂O and 4.8 % S)

*Apex contains 30 % N (5 % ammoniacal N and 25 % urea N), 2.9 % Ca, 1.2 % Mg & 8 % S.

4.3.2 Effect of Apex, Top Phos, EXCELIS MAXX and Bio-Stimulants on Canola **Cont'd from previous page**

PLANTING DATE:	June 1, 2020
FERTILIZERS:	As per treatments
PESTICIDES:	Roundup @ 3 L/ha applied June 5 and June 16, 2020,
	Lorsban 4E @ 2.5 L/ha applied July 9, 2020, and
	Malathion @ 535 mL/ha applied August 13, 2020
HARVEST DATE:	September 1, 2020
PREVIOUS CROP:	Linseed
VARIETY:	BY 6204TF

				YIELD		
		SEED 秦	SEED b	STRAW ^b	BIOMASS b	HARVEST
<u>Trt</u>	TREATMENT	kg/kg NUTRIENTS ^b	<u></u>	(MT/ha)	<u></u>	<u>INDEX (%)</u> ^b
1	ESN, urea, AS and TSP	16.2	4.35	6.52	10.87	40.4
2	ESN, urea, AS and Top Phos	14.8	3.99	5.42	9.42	42.4
3	ESN, urea, AS, TSP and FA Starter @ 3 L/ha at 2-3 leaves	17.7	4.77	6.92	11.69	40.8
4	ESN, urea, AS, TSP and IRYS @ 3 L/ha at 2-3 leaves	17.1	4.60	6.08	10.68	43.7
5	ESN, urea, AS, TSP and FL Gold @ 3 L/ha at beginning bolting	<u>a</u> 14.4	3.88	5.16	9.04	43.5
6	ESN, urea, AS, TSP and Genea @ 3 L/ha at beginning bolting	14.9	4.02	5.22	9.23	43.6
7	ESN, urea, AS, TSP and FL Gold @ 31/ha at first petal falling	14.3	3.86	5.79	9.65	41.3
8	ESN, urea, AS, TSP and Genea @ 31/ha at first petal falling	17.6	4.73	6.50	11.23	42.9
9	Apex (supplied both N and S) and TSP	15.3	4.12	7.41	11.52	36.6
10	Urea treated with EXCELIS MAXX; and TSP	16.3	4.39	5.90	10.28	43.7
	MEAN	15.9	4.27	6.09	10.36	41.9
	C.V. (%)	19.3	19.3	30.3	24.6	10.6
	PR>F	0.8652	0.8652	0.7171	0.8309	0.8400
	SE	0.48	0.12	0.29	0.40	0.70
	LSD (0.05)	NS	NS	NS	NS	NS

Notes:

♣ Indicates nutrients utilization efficiency.

a Means followed by the same letter codes were not significantly different based on Tukey's test (P=0.05)

b Letter codes not displayed for the means that were not affected by the treatments (P>0.05)

Pre seeding soil analysis 0-30 cm (ppm): Ammoniacal N: 6, Nitrate N: 13, Total N: 19, and S: 6

AS: Ammonium Sulphate

TSP: Tripple Superphosphate

4.3.2 Effect of Apex, Top Phos, EXCELIS MAXX and Bio-Stimulants on Canola Cont'd from previous page

		HEIGHT ^b	DAY	S TO	LODGING♠	PLANTS ^b
Trt	Treatment	<u>(cm)</u>	FLOWER ^b	MATURE	(0-9)	$/m^2$
1	ESN, urea, AS and TSP	112	39	101	0	51
2	ESN, urea, AS and Top Phos	102	40	101	0	49
3	ESN, urea, AS, TSP and FA Starter @ 3 L/ha at 2-3 leaves	110	39	101	0	47
4	ESN, urea, AS, TSP and IRYS @ 3 L/ha at 2-3 leaves	113	39	101	0	53
5	ESN, urea, AS, TSP and FL Gold @ 3 L/ha at beginning boltin	110	40	101	0	51
6	ESN, urea, AS, TSP and Genea @ 3 L/ha at beginning bolting	108	39	101	0	52
7	ESN, urea, AS, TSP and FL Gold @ 31/ha at first petal falling	104	39	101	0	52
8	ESN, urea, AS, TSP and Genea @ 31/ha at first petal falling	111	39	101	0	48
9	Apex (supplied both N and S) and TSP	113	40	101	0	41
10	Urea treated with EXCELIS MAXX; and TSP	111	40	101	0	46
	MEAN	109	39	101	0	49
	C.V. (%)	6.0	7.0	-	-	17.1
	PR>F	0.5100	0.5100	-	-	0.1800
	SE	1.0	0.4	-	-	1.3
	LSD (0.05)	NS	NS	-	-	NS

Notes:

a Letter codes not displayed for the means were not affected by the treatments (P>0.05)

b Letter codes not displayed for the means that were not affected by the treatments (P>0.05)

AS: Ammonium Sulphate

TSP: Tripple Superphosphate

4.3.3 Evaluation of Gypsum and Ammonium Sulphate as Sources of Sulphur (S) for Barley, Canola and Pea Residual Effect on Wheat Production

PLANTING DATE:May 26, 2020FERTILIZERS:74 kg N/ha (152 kg/ha 46-0-0, 39 kg/ha 11-52-0)20 kg P2O5/ha (39 kg/ha 11-52-0)20 kg K2O/ha (34 kg/ha 0-0-60)HERBICIDE:NoneHARVEST DATE:September 10, 2020PREVIOUS CROP:As per treatmentsVARIETY:Prosper

	L			YIELD			
FA	ACTOR A X B	<u>GRAIN</u> ♣ ^{<i>a</i>}	GRAIN ^a	STRAW ^a	BIOMASS	<u>HARVEST</u>	1000 K
MAIN PLOT	SUB PLOT	<u>kg/kg NUTRIENTS</u>	<u></u>	(MT/ha).	<u></u>	<u>INDEX (%)</u>	<u>WT.(g)</u>
Barley (Boroe)	No Sulphur	4.6	0.53	0.77	1.30	40.2	40
Barley (Boroe)	Gypsum @ 19.5 kg S/ha♠	8.0	0.91	1.06	1.97	44.5	38
Barley (Boroe)	AS @ 19.5 kg S/ha*	8.3	0.95	1.31	2.26	42.1	41
Canola (L252)	No Sulphur	6.7	0.77	1.19	1.96	38.8	37
Canola (L252)	Gypsum @ 19.5 kg S/ha♠	8.8	1.01	1.23	2.24	44.1	39
Canola (L252)	AS @ 19.5 kg S/ha*	8.6	0.99	1.46	2.44	39.3	39.0
Pea (Sorrento)	No Sulphur	8.8	1.01	1.23	2.24	42.1	42
Pea (Sorrento)	Gypsum @ 19.5 kg S/ha♠	8.8	1.00	1.26	2.26	44.7	42
Pea (Sorrento)	AS @ 19.5 kg S/ha*	5.0	0.57	0.76	1.33	42.8	38
MEAN		7.5	0.86	1.14	2.00	42.1	40
C.V. (%)		52.3	52.3	42.2	45.0	15.5	-
PR>F - A		0.7545	0.7545	0.3862	0.5406	0.6335	-
PR>F - B		0.4510	0.4510	0.7860	0.6406	0.2822	-
PR>F - (A x B)		0.3027	0.3027	0.2462	0.2478	0.9863	-
SE		0.66	0.075	0.080	0.150	1.08	-
LSD (0.05)		NS	NS	NS	NS	NS	-

Notes:

♣Indicates nutrients utilization efficiency

 \clubsuit Placed in the seed row

*AS stands for Ammonium Sulphate

4.3.3 Evaluation of Gypsum and Ammonium Sulphate as Sources of Sulphur (S) for Barley, Canola and Pea Residual Effect on Wheat Production...Cont'd from Previous page

		F8-	YIELD.			
	<u>GRAIN</u> ♣ ^{<i>a</i>}	GRAIN	STRAW	BIOMASS	HARVEST	1000 K
FACTOR A	kg/kg NUTRIENTS	<u></u>	(MT/ha	<u>)</u>	INDEX (%)	<u>WT.(g)</u>
Barley	7.0	0.80	1.05	1.84	42.2	40
Canola	8.1	0.92	1.29	2.21	40.7	38
Pea	7.5	0.86	1.08	1.94	43.2	41
MEAN	7.5	0.86	1.14	2.00	42.1	40
SE	0.66	0.075	0.080	0.150	1.08	-
			YIELD.			
	<u>GRAIN</u> ♣ ^{<i>a</i>}	<u>GRAIN</u>	STRAW	BIOMASS	HARVEST	1000 K
FACTOR B	kg/kg NUTRIENTS	<u></u>	(MT/ha)	<u>INDEX (%)</u>	<u>WT.(g)</u>
No Sulphur	6.7	0.77	1.07	1.83	40.3	40
Gypsum @ 19.5 kg S/ha♠	8.5	0.97	1.18	2.16	44.4	40
Ammonium Sulphate @ 19.5 kg S/ha	7.3	0.83	1.18	2.01	41.4	39
MEAN	7.5	0.86	1.14	2.00	42.1	40
SE	0.66	0.075	0.080	0.150	1.08	-
Following were seeded as guards and did not	get any sulphur:					
Barley (Synosolis)	7.2	0.82	0.95	1.77	48.3	36
Canola (L140P)	8.2	0.93	1.17	2.10	46.3	36
Pea (Polstead)	9.0	1.03	1.25	2.28	44.1	39
MEAN	8.1	0.93	1.12	2.05	46.2	37
PR>F	0.6400	0.6410	0.5100	0.5280	0.7770	-

Notes:

♣Indicates nutrients utilization efficiency

♠Placed in the seed row

a Letter codes not displayed for the means were not affected by the treatments (P>0.05)

4.3.3 Evaluation of Gypsum and Ammonium Sulphate as Sources of Sulphur (S) for Barley, Canola and Pea **Residual Effect on Wheat Production**

	Organic	Phosphorus	Potassium	Magnesium	Calcium	Sodium	p	Н	
CROP	Matter %	Bicarbonate ppm	K ppm	Mg ppm	Ca ppm	Na ppm	pН	Buffer	_
Barley (Boroe)	4.4	15 L	126 M	447 H	2300 M	34 M	6.1	6.6	
Canola (L252)	4.1	19 L	126 M	435 H	2210 L	29 L	6.0	6.5	
Pea (Sorrento)	4.1	20 M	135 M	485 H	2550 L	35 M	6.2	6.5	
	CEC		Percent	Base Saturation	1		Sulphur	Zinc	-
CROP	meg/100g	% K	% Mg	% Ca	%Н	% Na	S ppm	Zn ppm	_
Barley (Boroe)	20.4	1.6	18.2	56.2	23.2	0.7	9 VL	1.8 L	
Canola (L252)	21.1	1.5	17.2	52.4	28.2	0.6	7 VL	1.7 L	
Pea (Sorrento)	23.2	1.5	17.4	54.9	25.6	0.7	7 VL	1.7 L	
	Manganese	Iron	Copper	Boron	Saturation	Aluminum	Saturation	K/Mg	
CROP	Mn ppm	Fe ppm	Cu ppm	B ppm	%P	Al ppm	%Al	Ratio	ENR
Barley (Boroe)	10 L	93 VH	1.4 H	0.5 L	4 M	1009	0.4 G	0.09	56
Canola (L252)	8 L	93 VH	1.3 H	0.4 L	3 L	1032	0.4 G	0.09	53
Pea (Sorrento)	10 L	96 VH	1.4 H	0.3 VL	3 L	1060	0.3 G	0.09	53

Soil Tost Docults (Spring 2020)

Note: VL = Very low, L = Low, M = Medium, H = High, VH = Very high, G = Good

4.3.3 Evaluation of Gypsum and Ammonium Sulphate as Sources of Sulphur (S) for Barley, Canola and Pea Residual Effect on Wheat Production Averaged Over 2018 - 2020

				YIELD				
FA	ACTOR A X B	<u>GRAIN</u>	GRAIN	STRAW	BIOMASS	HARVEST	1000 K	TEST WT. ‡
MAIN PLOT	SUB PLOT	<u>kg/kg NUTRIENTS</u>	<u></u>	(MT/ha).	<u></u>	<u>INDEX (%)</u>	<u>WT.(g)</u>	<u>(kg/hl)</u>
Barley (Boroe)	No Sulphur	26.8	3.31	3.08	6.38	40.2	40	74.6
Barley (Boroe)	Gypsum @ 19.5 kg S/ha♠	28.6	3.44	3.10	6.54	41.5	40	75.4
Barley (Boroe)	AS @ 19.5 kg S/ha*	28.2	3.30	3.20	6.50	40.4	41	76
Canola (L252)	No Sulphur	29.8	3.94	3.42	7.36	42.3	40	76
Canola (L252)	Gypsum @ 19.5 kg S/ha♠	29.9	3.83	3.24	7.06	43.6	40	76
Canola (L252)	AS @ 19.5 kg S/ha*	30.0	3.65	3.19	6.83	40.9	41	76
Pea (Sorrento)	No Sulphur	29.5	3.52	3.18	6.70	40.5	41	76
Pea (Sorrento)	Gypsum @ 19.5 kg S/ha♠	28.8	3.60	3.45	7.06	42.6	42	76.2
Pea (Sorrento)	AS @ 19.5 kg S/ha*	26.8	3.23	2.87	6.10	41.3	38	76.2
MEAN		28.9	3.57	3.23	6.80	41.5	41	76
C.V. (%)		69.1	68.3	64.2	65.9	28.1	-	-
PR>F - A		0.9180	0.7440	0.9560	0.8560	0.8690	-	-
PR>F - B		0.9890	0.9240	0.9380	0.9300	0.8210	-	-
PR>F - (A x B)		0.9980	0.9990	0.9850	0.9970	0.9980	-	-
SE		1.99	0.243	0.206	0.445	1.17	-	-
LSD (0.05)		NS	NS	NS	NS	NS	-	-

Notes:

♣Indicates nutrients utilization efficiency

♠Placed in the seed row

*AS stands for Ammonium Sulphate

‡Test wt. was only recorded in 2018-2019

4.3.3 Evaluation of Gypsum and Ammonium Sulphate as Sources of Sulphur (S) for Barley, Canola and Pea Residual Effect on Wheat Production...Cont'd from Previous page Averaged Over 2018 - 2020

			YIELD.				
	GRAIN♣	GRAIN	STRAW	BIOMASS	HARVEST	1000 K	TEST WT.‡
FACTOR A	kg/kg NUTRIENTS	<u></u>	(MT/ha)		INDEX (%)	<u>WT.(g)</u>	<u>(kg/hl)</u>
Barley	27.9	3.35	3.13	6.48	40.7	41	75
Canola	30.0	3.82	3.27	7.09	42.6	41	76
Pea	28.8	3.52	3.22	6.74	41.2	40	76
MEAN	28.9	3.56	3.21	6.77	41.5	41	76
	<u>GRAIN</u> ♣	<u>GRAIN</u>	STRAW	BIOMASS	HARVEST	1000 K	TEST WT.‡
FACTOR B	<u>kg/kg NUTRIENTS</u>	<u></u>	(MT/ha))	<u>INDEX (%)</u>	<u>WT.(g)</u>	<u>(kg/hl)</u>
No Sulphur	28.7	3.59	3.23	6.82	41.0	40	76
No Sulphur							
Gypsum @ 19.5 kg S/ha♠	29.1	3.62	3.26	6.89	42.6	41	76
Ammonium Sulphate @ 19.5 kg S/ha	28.3	3.39	3.08	6.48	40.9	40	76
MEAN	28.7	3.54	3.19	6.73	41.5	40	76
	20.7	5.54	5.17	0.75	41.5	40	70
Following were seeded as guards and di	d not get any sulphur:						
Barley (Synosolis)	24.4	2.73	2.80	5.52	41.2	35	75
Canola (L140P)	26.8	2.82	2.84	5.66	40.0	35	77
Pea (Polstead)	24.4	3.00	3.15	6.15	40.0	37	76
MEAN	25.2	2.85	2.93	5.78	40.4	36	76

Notes:

♣Indicates nutrients utilization efficiency

♠Placed in the seed row

‡Test wt. was only recorded in 2018-2019

Forages

4.4.1 Comparative Performance of Gypsum and Lime for Galega Production

PLANTING DATE: FERTILIZER: HERBICIDE:	90 kg P ₂ O ₅ /ha (50 kg K ₂ O /ha () kg/ha 21-0-0-24 200 kg/ha 0-45-(83 kg/ha 0-0-60) Venture L @ 2 1)	or Treatment 1; 98	kg/ha 46-0-0 for	Treatments 2-7)
HARVEST DATES:	June 18, 2020,	venture L $(w \ge 1)$	2/ 11 a			
PREVIOUS CROP:	Fallow					
TREVIOUS CROIT.	Tanow					
	DRY M	ATTER YIELD	$(kg/ha)^{a}$	FRESH	I MATTER YIEL	$D (kg/ha)^{a}$
	2019	2020	2019-2020	2019	2020	2019-2020
TREATMENTS	TOTAL	<u>1st CUT</u>	TOTAL	TOTAL	<u>1st CUT</u>	TOTAL
1 Check: No Lime or Gypsum	2532	1105	3637	14870	6287	21157
2 Gypsum @ 1.25 MT/ha	2404	1255	3659	12846	7429	20275
3 Gypsum @ 2.5 MT/ha	3042	1294	4336	15942	6872	22814
4 Gypsum @ 3.75 MT/ha	2418	1055	3473	12268	5537	17805
5 Lime @ 1.07 MT/ha	2974	1185	4159	16176	6533	22709
6 Lime @ 2.14 MT/ha	3084	1510	4594	16126	7683	23809
7 Lime @ 3.21 MT/ha	2585	1202	3787	13661	6821	20482
MEAN	2720	1229	3949	14556	6737	21293
C.V. (%)	21.7	26.6	-	21.5	25.9	-
PR>F	0.1816	0.4410	-	0.1847	0.7120	-
SE	292.7	61.7	-	1544.1	329.3	-
LSD (0.05)	NS	NS	-	NS	NS	-

Notes:

Pre seeding soil analysis 0-15 cm (ppm): pH: 5.9; Ammoniacal N: 1, Nitrate N: 20, Total N: 21, and S: 28

The treatments had no significent effect on the yield

A second cut was not taken in 2020 due to poor regrowth

a Letter codes not displayed for the means not affected by the treatment (P>0.05)

4.4.1 Comparative Performance of Gypsum and Lime for Galega Production

...Cont'd from previous page

×	DRY N	IATTER YIE	$ELD (kg/ha)^{a}$	FRESH	MATTER Y	TELD (kg/ha) ^a
	2019	2020	2019-2020	2019	2020	2019-2020
<u>GYPSUM (MT/ha)</u>	<u>TOTAL</u>	<u>1st CUT</u>	TOTAL	<u>TOTAL</u>	<u>1st CUT</u>	TOTAL
0	2794	1250	4044	15208	6831	22039
1.25	2404	1255	3659	12846	7429	20275
2.50	3042	1294	4336	15942	6872	22814
3.75	2418	1055	3473	12268	5537	17805
MEAN	2665	1214	3878	14066	6667	20733
C.V. (%)	21.7	26.6	-	21.5	25.9	-
PR>F	0.1694	0.4640	-	0.0879	0.3230	-
SE	297.4	61.7	-	1537.4	329.3	-
LSD (0.05)	NS	NS	-	NS	NS	-
	DRY M	IATTER YIE	ELD (kg/ha) ^a	FRESH	MATTER Y	TELD (kg/ha) ^a
	2019	2020	2019-2020	2019	2020	2019-2020
LIME (MT/ha)	TOTAL	<u>1st CUT</u>	TOTAL	<u>TOTAL</u>	<u>1st CUT</u>	TOTAL
0	2599	1177	3776	13982	6531	20513
1.07	2974	1185	4160	16176	6533	22709
2.14	3084	1510	4594	16126	7683	23809
	0001	1010	1071	10120		
3.21	2585	1202	3787	13661	6821	20482
3.21 MEAN						20482 21878
	2585	1202	3787	13661	6821	
MEAN	2585 2811	1202 1269	3787 4079	13661 14986	6821 6892	
MEAN C.V. (%)	2585 2811 21.7	1202 1269 26.6	3787 4079	13661 14986 21.5	6821 6892 25.9	

Note:

The treatments had no significent effect on the yield

A second cut was not taken in 2020 due to poor regrowth

a Letter codes not displayed for the means not affected by the treatment (P>0.05)

4.4.1 Comparative Performance of Gypsum and Lime for Galega Production...Cont'd from previous page Quality Parameters on Dry Matter Basis: First Cut

	CRUDE	SOLUBLE									
	PROTEIN	PROTEIN	ADF-CP	UIP	ADF	NDF	TDN	NEL	NEG	NEM	RFV
<u>TREATMENTS</u>	<u>%</u>	<u>% of CP</u>	<u>%</u>	<u>% of CP</u>	<u>%</u>	<u>%</u>	<u>%</u>	<u></u>	Mcal/kg.	<u></u>	
Check: No Lime or Gypsum	17.4	35.8	1.91	36.7	37.5	43.2	66.3	1.50	0.73	1.30	129
Gypsum @ 1.25 MT/ha	16.4	35.8	2.04	36.7	38.2	45.6	65.8	1.49	0.71	1.28	121
Gypsum @ 2.5 MT/ha	17.8	35.8	1.88	36.7	37.5	45.7	65.2	1.48	0.73	1.30	121
Gypsum @ 3.75 MT/ha	15.4	36.1	1.28	36.5	36.2	42.7	67.2	1.53	0.75	1.33	132
Lime @ 1.07 MT/ha	17.0	35.8	1.70	36.7	36.4	42.7	67.5	1.53	1.47	1.33	132
Lime @ 2.14 MT/ha	15.5	36.0	1.47	36.6	37.3	43.8	66.9	1.52	0.73	1.30	127
Lime @ 3.21 MT/ha	17.1	35.8	1.75	36.7	35.8	43.0	67.1	1.52	0.77	1.35	132
MEAN	16.6	35.9	1.72	36.6	37.0	43.8	66.6	1.51	0.84	1.31	128
			a	a		C1	a	-			
	Р	K	S	Ca	Mg	Cl	Cu	Zn	Fe	Mn	Na
<u>TREATMENTS</u>	<u>%</u>	<u>%</u>	<u>%</u>	<u>%</u>	<u>%</u>	<u>%</u>	<u>ug/g</u>	<u>ug/g</u>	<u>ug/g</u>	<u>ug/g</u>	<u>%</u>
Check: No Lime or Gypsum	0.33	3.62	0.28	1.05	0.43	0.27	11.8	25.9	181	47.2	0.04
Gypsum @ 1.25 MT/ha	0.37	4.66	0.28	1.36	0.46	0.27	10.2	23.7	182	31.1	0.03
Gypsum @ 2.5 MT/ha	0.35	3.37	0.26	1.02	0.42	0.28	12.4	26.7	159	28.8	0.03
Gypsum @ 3.75 MT/ha	0.31	3.34	0.25	1.02	0.36	0.35	9.7	24.6	172	30.4	0.02
Lime @ 1.07 MT/ha	0.34	3.62	0.29	1.08	0.46	0.29	11.2	25.0	154	34.4	0.04
Lime @ 2.14 MT/ha	0.31	3.46	0.28	0.98	0.39	0.32	11.6	27.9	249	29.6	0.02
Lime @ 3.21 MT/ha	0.34	3.70	0.30	1.14	0.44	0.28	10.9	24.0	179	32.1	0.06
\sim											
MEAN	0.34	3.68	0.28	1.09	0.42	0.29	11.1	25.4	182	33.4	0.03

UIP = Bypass Protein, ADF = Acid Detergent Fibre, NDF = Neutral Detergent Fibre, TDN = Total Digestible Nutrients, NE = Net Energy, L = Lactation, M = Maintenance, G = Gain and RFV = Relative Feed Value.

4.4.1 Comparative Performance of Gypsum and Lime for Galega Production...Cont'd from previous page Quality parameters on dry matter basis: First cut 2019-2020 average

	CRUDE	SOLUBLE									
	PROTEIN	PROTEIN	ADF-CP	UIP	ADF	NDF	TDN	NEL	NEG	NEM	RFV
<u>TREATMENTS</u>	<u>%</u>	<u>% of CP</u>	<u>%</u>	<u>% of CP</u>	<u>%</u>	<u>%</u>	<u>%</u>	<u></u>]	Mcal/kg.	<u></u>	
Check: No Lime or Gypsum	14.2	36.0	1.40	34.3	37.8	52.1	64.5	1.46	0.72	1.29	109
Gypsum @ 1.25 MT/ha	16.2	35.7	1.95	34.4	39.3	47.2	63.3	1.43	0.69	1.26	115
Gypsum @ 2.5 MT/ha	16.6	35.8	1.73	34.4	38.2	47.2	63.4	1.44	0.71	1.28	117
Gypsum @ 3.75 MT/ha	15.5	36.0	1.53	34.3	37.1	44.0	65.6	1.49	0.73	1.31	127
Lime @ 1.07 MT/ha	16.3	35.8	1.72	34.4	37.2	44.0	65.0	1.47	1.09	1.31	111
Lime @ 2.14 MT/ha	15.5	35.9	1.51	34.3	37.3	44.5	65.4	1.49	0.73	1.30	125
Lime @ 3.21 MT/ha	16.3	35.7	1.69	34.4	37.8	45.5	64.6	1.46	0.72	1.30	122
MEAN	15.8	35.9	1.64	34.4	37.8	46.4	64.5	1.46	0.77	1.29	118
	Р	K	S	Ca	Mg	Cl	Cu	Zn	Fe	Mn	Na
TREATMENTS	<u>%</u>	<u>%</u>	<u>%</u>	<u>%</u>	<u>%</u>	<u>%</u>	<u>ug/g</u>	ug/g	<u>ug/g</u>	<u>ug/g</u>	<u>%</u>
Check: No Lime or Gypsum	0.32	3.17	0.23	0.74	0.30	0.47	9.0	21.9	145	44.6	0.05
Gypsum @ 1.25 MT/ha	0.34	3.89	0.26	1.20	0.42	0.34	12.1	26.5	177	35.8	0.05
Gypsum @ 2.5 MT/ha	0.33	3.16	0.24	0.95	0.37	0.34	12.0	37.0	228	30.8	0.05
Gypsum @ 3.75 MT/ha	0.32	3.25	0.27	1.05	0.36	0.41	11.2	26.2	183	35.6	0.07
Lime @ 1.07 MT/ha	0.33	3.17	0.24	0.75	0.32	0.48	8.7	21.5	132	38.2	0.05
Lime @ 2.14 MT/ha	0.32	3.31	0.27	0.92	0.37	0.38	11.8	27.4	217	31.2	0.06
Lime @ 3.21 MT/ha	0.35	3.58	0.28	1.04	0.41	0.36	11.4	25.7	160	34.4	0.07
-											
MEAN	0.33	3.36	0.26	0.95	0.36	0.39	10.9	26.6	177	35.8	0.06

UIP = Bypass Protein, ADF = Acid Detergent Fibre, NDF = Neutral Detergent Fibre, TDN = Total Digestible Nutrients, NE = Net Energy, L = Lactation, M = Maintenance, G = Gain and RFV = Relative Feed Value.

4.4.2 Maximizing Yield and Quality of Galega

PLANTING DATE:	May 23, 2018
FERTILIZER:	As per treatment
HERBICIDE:	None
HARVEST DATES:	June 15, 2020
PREVIOUS CROP:	Winter cereals

						DRY N	ATTER	YIELD	(kg/ha)	FRESH M	IATTER YIEL	D (kg/ha)
	N	UTRIEN	T RAT	ES (kg/h	<u>ia)</u>	2019 ^b	2020	а	2019-2020	2019 ^{<i>a</i>}	2020 ^b	2019-2020
Trt	<u>N</u>	<u>S</u>	<u>B</u>	Zn	<u>Mn</u>	TOTAL	<u>1st CU</u>	JT	TOTAL	TOTAL	<u>1st CUT</u>	TOTAL
1	0	0	0	0	0	2750	1104	b	3854	12742 <i>b</i>	7019	19761
2	45	0	0	0	0	3655	1576	ab	5231	22625 a	10349	32974
3	45	24	0	0	0	3832	1422	ab	5254	20024 ab	8414	28438
4	45	24	1	0	0	2720	1369	ab	4089	18037 ab	8520	26557
5	45	24	1	7	0	3618	1567	ab	5185	22029 a	9652	31681
6	45	24	1	7	2	3615	1690	ab	5305	20607 ab	8567	29174
7	45	36	2	7	2	2921	1531	ab	4452	17756 <i>ab</i>	8863	26619
8	45	36	3	7	2	3781	1625	ab	5406	21795 a	9805	31600
9	45	36	4	7	2	3339	1387	ab	4726	17227 ab	8462	25689
10	60	36	2	7	2	3477	1853	a	5330	20698 ab	9821	30519
I	MEAN					3371	1512	2	4883	19354	8947	28301
(C.V. (%)				25.4	27.9	9	-	25.7	26.3	-
]	PR>F					0.1424	0.015	0	-	0.0176	0.2400	-
S	SE					429.8	66.'	7	-	787.9	372.0	-
]	LSD (0.	05)				NS	430	6	-	6289	NS	-

Notes:

*Trt stands for Treatment

Pre seeding soil analysis 0-15 cm (ppm): pH: 5.9; Ammoniacal N: 1, Nitrate N: 20, Total N: 21, and S: 28

a Means followed by the same letter codes were not significantly different based on Tukey's test (P=0.05)

b Letter codes not displayed for the means not affected by the treatment (P>0.05)

4.4.2 Maximizing Yield and Qualiy of Galega...Cont'd from previous page Quality Parameters on Dry Matter Basis: First Cut

						CRUDE	SOLUBLE									
		NUTRIEN	T RATES	<u>(kg/ha)</u>		PROTEIN	PROTEIN	ADF-CP	UIP	ADF	NDF	TDN	NEL	NEG	NEM	RFV
Trt	<u>N</u>	<u>S</u>	<u>B</u>	<u>Zn</u>	<u>Mn</u>	<u>%</u>	<u>% of CP</u>	<u>%</u>	<u>% of CP</u>	<u>%</u>	<u>%</u>	<u>%</u>	<u></u>]	Mcal/kg.	<u></u>	
1	0	0	0	0	0	19.3	35.7	2.46	36.7	34.2	45.0	66.6	1.51	0.80	1.38	129
2	45	0	0	0	0	17.9	35.8	2.51	36.7	36.9	45.5	66.0	1.50	0.75	1.32	123
3	45	24	0	0	0	18.1	36.0	2.40	36.6	35.8	44.2	69.5	1.58	0.77	1.35	129
4	45	24	1	0	0	17.0	35.9	2.04	36.6	35.0	44.9	66.9	1.52	0.79	1.37	128
5	45	24	1	7	0	19.2	35.8	3.48	36.7	38.9	48.6	66.3	1.50	0.69	1.26	112
6	45	24	1	7	2	16.4	36.2	1.47	36.5	34.6	43.9	69.2	1.58	0.79	1.37	131
7	45	36	2	7	2	16.9	35.9	2.00	36.6	34.4	46.7	67.2	1.53	0.80	1.38	124
8	45	36	3	7	2	19.6	35.6	2.48	36.8	34.9	46.0	66.5	1.51	0.79	1.37	125
9	45	36	4	7	2	17.6	35.8	2.22	36.7	35.0	43.8	67.0	1.52	0.79	1.37	131
10	60	36	2	7	2	17.9	36.0	1.88	36.6	34.2	44.9	66.7	1.51	0.80	1.38	129
MEA	N					18.0	35.9	2.29	36.7	35.4	45.3	67.2	1.53	0.78	1.36	126
		NUTRIEN	T RATES	(kg/ha)		Р	К	S	Ca	Mg	Cl	Cu	Zn	Fe	Mn	Na
Trt		<u>NUTRIEN</u> S		· · · ·	Mn	P %	K %	S %	Ca %	Mg %	C1 %	Cu ug/g	Zn ug/g	Fe ug/g		Na %
Trt 1	<u>N</u> 0	<u>NUTRIEN</u> <u>S</u> 0	<u>T RATES</u> <u>B</u> 0	<u>(kg/ha)</u> <u>Zn</u> 0	<u>Mn</u> 0	<u>%</u>	<u>%</u>	<u>%</u>	<u>%</u>	<u>%</u>	Cl <u>%</u> 0.21	<u>ug/g</u>	Zn <u>ug/g</u> 28.7	Fe <u>ug/g</u> 118	<u>ug/g</u>	Na <u>%</u> 0.08
1	<u>N</u>	<u>S</u>	<u>B</u>	Zn		<u>%</u> 0.40	<u>%</u> 2.87	<u>%</u> 0.23		•	<u>%</u>		<u>ug/g</u>	<u>ug/g</u>	<u>ug/g</u> 39.8	<u>%</u>
	<u>N</u> 0	<u>S</u> 0	<u>B</u> 0	<u>Zn</u> 0	0	<u>%</u>	<u>%</u>	<u>%</u>	<u>%</u> 1.24	<u>%</u> 0.50	<u>%</u> 0.21	<u>ug/g</u> 13.2	<u>ug/g</u> 28.7	<u>ug/g</u> 118	<u>ug/g</u>	<u>%</u> 0.08
1 2	<u>N</u> 0 45	<u>S</u> 0 0	<u>B</u> 0 0	<u>Zn</u> 0 0	0 0	<u>%</u> 0.40 0.37	<u>%</u> 2.87 2.97	<u>%</u> 0.23 0.23	<u>%</u> 1.24 1.27	<u>%</u> 0.50 0.57	<u>%</u> 0.21 0.22	<u>ug/g</u> 13.2 13.1	<u>ug/g</u> 28.7 28.3	<u>ug/g</u> 118 107	<u>ug/g</u> 39.8 38.2	<u>%</u> 0.08 0.08
1 2 3	<u>N</u> 0 45 45	<u>S</u> 0 0 24	<u>B</u> 0 0	<u>Zn</u> 0 0 0	0 0 0	<u>%</u> 0.40 0.37 0.36	<u>%</u> 2.87 2.97 2.84	<u>%</u> 0.23 0.23 0.39	<u>%</u> 1.24 1.27 1.11	<u>%</u> 0.50 0.57 0.51	<u>%</u> 0.21 0.22 0.24	<u>ug/g</u> 13.2 13.1 13.4	<u>ug/g</u> 28.7 28.3 31.9	<u>ug/g</u> 118 107 108	<u>ug/g</u> 39.8 38.2 46.0	<u>%</u> 0.08 0.08 0.04
1 2 3 4	<u>N</u> 0 45 45 45	<u>S</u> 0 0 24 24	<u>B</u> 0 0 1	<u>Zn</u> 0 0 0 0	0 0 0 0	<u>%</u> 0.40 0.37 0.36 0.32	<u>%</u> 2.87 2.97 2.84 2.4	<u>%</u> 0.23 0.23 0.39 0.34	<u>%</u> 1.24 1.27 1.11 1.17	<u>%</u> 0.50 0.57 0.51 0.54	<u>%</u> 0.21 0.22 0.24 0.26	<u>ug/g</u> 13.2 13.1 13.4 12.7	<u>ug/g</u> 28.7 28.3 31.9 27.3	<u>ug/g</u> 118 107 108 108	<u>ug/g</u> 39.8 38.2 46.0 34.8	$\frac{96}{0.08}$ 0.08 0.04 0.04
1 2 3 4 5	<u>N</u> 0 45 45 45 45	$ \frac{\underline{S}}{0} $ 0 24 24 24 24	<u>B</u> 0 0 1 1	<u>Zn</u> 0 0 0 0 7	0 0 0 0 0	% 0.40 0.37 0.36 0.32 0.44	<u>%</u> 2.87 2.97 2.84 2.4 4.17	<u>%</u> 0.23 0.23 0.39 0.34 0.35	<u>%</u> 1.24 1.27 1.11 1.17 1.14	<u>%</u> 0.50 0.57 0.51 0.54 0.51	<u>%</u> 0.21 0.22 0.24 0.26 0.20	<u>ug/g</u> 13.2 13.1 13.4 12.7 14.8	<u>ug/g</u> 28.7 28.3 31.9 27.3 39.4	<u>ug/g</u> 118 107 108 108 131	ug/g 39.8 38.2 46.0 34.8 47.2	<u>%</u> 0.08 0.08 0.04 0.04 0.04
1 2 3 4 5 6	<u>N</u> 0 45 45 45 45 45 45	<u>S</u> 0 24 24 24 24 24	<u>B</u> 0 0 1 1 1	<u>Zn</u> 0 0 0 7 7 7	0 0 0 0 0 2	% 0.40 0.37 0.36 0.32 0.44	<u>%</u> 2.87 2.97 2.84 2.4 4.17 2.79	% 0.23 0.23 0.39 0.34 0.35 0.34	<u>%</u> 1.24 1.27 1.11 1.17 1.14 0.86	<u>%</u> 0.50 0.57 0.51 0.54 0.51 0.44	<u>%</u> 0.21 0.22 0.24 0.26 0.20 0.30	<u>ug/g</u> 13.2 13.1 13.4 12.7 14.8 12.7	<u>ug/g</u> 28.7 28.3 31.9 27.3 39.4 37.5	<u>ug/g</u> 118 107 108 108 131 93	<u>ug/g</u> 39.8 38.2 46.0 34.8 47.2 38.1	<u>%</u> 0.08 0.08 0.04 0.04 0.04 0.05
1 2 3 4 5 6 7	<u>N</u> 0 45 45 45 45 45 45	$ \frac{\$}{0} 0 24 24 24 24 36 $	B 0 0 1 1 1 2	<u>Zn</u> 0 0 0 7 7 7 7	0 0 0 0 0 2 2	$\frac{96}{0.40}$ 0.40 0.37 0.36 0.32 0.44 0.36 0.32	<u>%</u> 2.87 2.97 2.84 2.4 4.17 2.79 2.80	$\frac{\%}{0.23} \\ 0.23 \\ 0.39 \\ 0.34 \\ 0.35 \\ 0.34 \\ 0.35 \\ 0$	<u>%</u> 1.24 1.27 1.11 1.17 1.14 0.86 0.96	<u>%</u> 0.50 0.57 0.51 0.54 0.51 0.44 0.46	% 0.21 0.22 0.24 0.26 0.20 0.30 0.28	<u>ug/g</u> 13.2 13.1 13.4 12.7 14.8 12.7 11.3	<u>ug/g</u> 28.7 28.3 31.9 27.3 39.4 37.5 35.2	<u>ug/g</u> 118 107 108 108 131 93 92	<u>ug/g</u> 39.8 38.2 46.0 34.8 47.2 38.1 40.2	$\frac{\%}{0.08} \\ 0.08 \\ 0.04 \\ 0.04 \\ 0.04 \\ 0.05 \\ 0.05 \\ 0.05$
1 2 3 4 5 6 7 8	<u>N</u> 0 45 45 45 45 45 45 45 45	$ \frac{\underline{S}}{0} 0 24 24 24 24 36 36 36 $	$ \underline{B} \\ 0 \\ 0 \\ 1 \\ 1 \\ 2 \\ 3 $	<u>Zn</u> 0 0 0 7 7 7 7 7	0 0 0 0 0 2 2 2 2	$\frac{\%}{0.40} \\ 0.37 \\ 0.36 \\ 0.32 \\ 0.44 \\ 0.36 \\ 0.32 \\ 0.36 \\ 0.32 \\ 0.36 \\ 0.32 \\ 0.36 \\ 0.36 \\ 0.32 \\ 0.36 \\ 0.32 \\ 0.36 \\ 0.36 \\ 0.32 \\ 0.36 \\ 0.36 \\ 0.32 \\ 0.36 \\ 0.36 \\ 0.32 \\ 0.36 \\ 0$	% 2.87 2.97 2.84 2.4 4.17 2.79 2.80 2.94	$\frac{\%}{0.23} \\ 0.23 \\ 0.39 \\ 0.34 \\ 0.35 \\ 0.34 \\ 0.35 \\ 0.32 \\ 0.32 \\ 0.32 \\ 0.23 \\ 0$	<u>%</u> 1.24 1.27 1.11 1.17 1.14 0.86 0.96 1.18	% 0.50 0.57 0.51 0.54 0.51 0.44 0.46 0.51	% 0.21 0.22 0.24 0.26 0.20 0.30 0.28 0.18	<u>ug/g</u> 13.2 13.1 13.4 12.7 14.8 12.7 11.3 12.3	<u>ug/g</u> 28.7 28.3 31.9 27.3 39.4 37.5 35.2 36.2	<u>ug/g</u> 118 107 108 108 131 93 92 130	<u>ug/g</u> 39.8 38.2 46.0 34.8 47.2 38.1 40.2 46.4	$\frac{\%}{0.08} \\ 0.08 \\ 0.04 \\ 0.04 \\ 0.04 \\ 0.05 \\ 0.05 \\ 0.05 \\ 0.04$
1 2 3 4 5 6 7 8 9	<u>N</u> 0 45 45 45 45 45 45 45 45 45 45	$ \frac{S}{0} 0 24 24 24 24 36 36 36 36 $	B 0 0 0 1 1 2 3 4	Zn 0 0 0 7 7 7 7 7 7 7	0 0 0 0 0 2 2 2 2 2 2	$\frac{\%}{0.40} \\ 0.37 \\ 0.36 \\ 0.32 \\ 0.44 \\ 0.36 \\ 0.32 \\ 0.36 \\ 0.35$	% 2.87 2.97 2.84 2.4 4.17 2.79 2.80 2.94 2.83	$\frac{\%}{0.23} \\ 0.23 \\ 0.39 \\ 0.34 \\ 0.35 \\ 0.34 \\ 0.35 \\ 0.32 \\ 0.48 \\ 0.48 \\ 0.48 \\ 0.23 \\ 0.23 \\ 0.48 \\ 0.23 \\ 0.23 \\ 0.24 \\ 0.23 \\ 0.24 \\ 0.23 \\ 0.24 \\ 0.23 \\ 0.23 \\ 0.24 \\ 0.23 \\ 0.24 \\ 0.23 \\ 0.24 \\ 0.23 \\ 0.24 \\ 0.23 \\ 0.24 \\ 0.23 \\ 0.24 \\ 0.23 \\ 0.24 \\ 0.23 \\ 0.24 \\ 0.23 \\ 0.24 \\ 0.23 \\ 0.24 \\ 0.23 \\ 0.24 \\ 0.23 \\ 0.24 \\ 0.23 \\ 0.24 \\ 0.23 \\ 0.24 \\ 0.23 \\ 0.24 \\ 0.23 \\ 0.24 \\ 0.24 \\ 0.25 \\ 0.24 \\ 0.24 \\ 0.25 \\ 0.24 \\ 0.25 \\ 0.24 \\ 0.25 \\ 0.24 \\ 0.25 \\ 0.24 \\ 0.25 \\ 0.24 \\ 0.25 \\ 0.24 \\ 0.25 \\ 0.24 \\ 0.25 \\ 0.24 \\ 0.25 \\ 0.24 \\ 0.25 \\ 0.24 \\ 0.25 \\ 0.24 \\ 0.25 \\ 0$	% 1.24 1.27 1.11 1.17 1.14 0.86 0.96 1.18 1.20	% 0.50 0.57 0.51 0.54 0.51 0.44 0.46 0.51 0.56	% 0.21 0.22 0.24 0.26 0.20 0.30 0.28 0.18 0.24	<u>ug/g</u> 13.2 13.1 13.4 12.7 14.8 12.7 11.3 12.3 13.4	<u>ug/g</u> 28.7 28.3 31.9 27.3 39.4 37.5 35.2 36.2 40.8	<u>ug/g</u> 118 107 108 108 131 93 92 130 172	<u>ug/g</u> 39.8 38.2 46.0 34.8 47.2 38.1 40.2 46.4 48.1	$\frac{\%}{0.08} \\ 0.08 \\ 0.04 \\ 0.04 \\ 0.04 \\ 0.05 \\ 0.05 \\ 0.05 \\ 0.04 \\ 0.10 \\ 0.10 \\ 0.01 \\ 0$

UIP = Bypass Protein, ADF = Acid Detergent Fibre, NDF = Neutral Detergent Fibre, TDN = Total Digestible Nutrients,

NE = Net Energy, L = Lactation, M = Maintenance, G = Gain and RFV = Relative Feed Value.

4.4.2 Maximizing Yield and Qualiy of Galega...Cont'd from previous page Quality Parameters on Dry Matter Basis: First Cut 2019-2020 Average

						CRUDE	SOLUBLE									
		NUTRIEN'	T RATES	(kg/ha)		PROTEIN	PROTEIN	ADF-CP	UIP	ADF	NDF	TDN	NEL	NEG	NEM	RFV
Trt	N	<u>S</u>	<u>B</u>	<u>Zn</u>	Mn	<u>%</u>	<u>% of CP</u>	<u>%</u>	% of CP	<u>%</u>	<u>%</u>	<u>%</u>	<u></u>]	Mcal/kg.	<u></u>	
1	0	0	0	0	0	17.5	35.8	1.75	36.8	33.1	45.2	67.5	1.53	0.83	1.41	130
2	45	0	0	0	0	17.1	35.7	1.99	36.8	37.3	45.5	65.9	1.50	0.74	1.31	122
3	45	24	0	0	0	17.5	35.8	1.82	26.7	34.3	43.6	68.6	1.56	0.81	1.45	133
4	45	24	1	0	0	17.3	35.7	1.72	36.7	34.3	42.7	67.8	1.54	0.81	1.39	136
5	45	24	1	7	0	17.8	35.7	2.32	36.7	36.8	47.4	66.4	1.51	0.74	1.32	118
6	45	24	1	7	2	16.3	35.9	1.29	36.7	34.6	44.8	68.1	1.55	0.79	1.37	129
7	45	36	2	7	2	17.3	35.8	1.66	36.7	34.4	45.2	67.2	1.53	0.80	1.38	128
8	45	36	3	7	2	17.7	35.6	1.98	36.8	36.6	46.6	65.8	1.49	0.75	1.33	121
9	45	36	4	7	2	16.9	35.8	1.56	36.7	33.4	44.8	67.2	1.53	0.83	1.41	130
10	60	36	2	7	2	18.6	35.8	1.72	36.7	34.1	44.3	67.0	1.52	0.81	1.39	131
MEA	Ν					17.4	35.7	1.78	35.7	34.9	45.0	67.1	1.52	0.79	1.37	128
		NUTRIEN'	T RATES	(kg/ha)		Р	K	S	Ca	Mg	Cl	Cu	Zn	Fe	Mn	Na
Trt	<u>N</u>			<u>(kg/ha)</u> <u>Zn</u>	<u>Mn</u>			S <u>%</u>	Ca <u>%</u>	Mg <u>%</u>	Cl <u>%</u>	Cu ug/g	Zn ug/g	Fe ug/g	Mn ug/g	
Trt 1	<u>N</u> 0	<u>NUTRIEN</u> <u>S</u> 0	<u>T RATES</u> <u>B</u> 0		<u>Mn</u> 0	Р <u>%</u> 0.38	K <u>%</u> 2.89			Mg <u>%</u> 0.44						Na <u>%</u> 0.06
		<u>S</u>	<u>B</u>	Zn		<u>%</u>	<u>%</u>	<u>%</u>	<u>%</u>	<u>%</u>	<u>%</u>	<u>ug/g</u>	<u>ug/g</u>	<u>ug/g</u>	<u>ug/g</u>	<u>%</u>
1	0	<u>S</u> 0	<u>B</u> 0	<u>Zn</u> 0	0	<u>%</u> 0.38	<u>%</u> 2.89	<u>%</u> 0.21	<u>%</u> 1.12	<u>%</u> 0.44	<u>%</u> 0.33	<u>ug/g</u> 11.8	<u>ug/g</u> 29.0	<u>ug/g</u> 108	<u>ug/g</u> 44.8	<u>%</u> 0.06
1 2	0 45	<u>S</u> 0 0	<u>B</u> 0 0	<u>Zn</u> 0 0	0 0	<u>%</u> 0.38 0.36	<u>%</u> 2.89 3.26	<u>%</u> 0.21 0.21	<u>%</u> 1.12 1.27	<u>%</u> 0.44 0.56	<u>%</u> 0.33 0.34	<u>ug/g</u> 11.8 11.7	<u>ug/g</u> 29.0 25.5	<u>ug/g</u> 108 109	<u>ug/g</u> 44.8 47.2	<u>%</u> 0.06 0.08
1 2 3	0 45 45	<u>S</u> 0 0 24	<u>B</u> 0 0	<u>Zn</u> 0 0 0	0 0 0	<u>%</u> 0.38 0.36 0.35	<u>%</u> 2.89 3.26 2.71	<u>%</u> 0.21 0.21 0.32	<u>%</u> 1.12 1.27 1.07	<u>%</u> 0.44 0.56 0.47	<u>%</u> 0.33 0.34 0.32	<u>ug/g</u> 11.8 11.7 11.3	<u>ug/g</u> 29.0 25.5 29.1	<u>ug/g</u> 108 109 115	<u>ug/g</u> 44.8 47.2 43.4	<u>%</u> 0.06 0.08 0.04
1 2 3 4	0 45 45 45	<u>S</u> 0 24 24	<u>B</u> 0 0	$ \frac{Zn}{0} $ 0 0 0 0	0 0 0 0	<u>%</u> 0.38 0.36 0.35 0.33	<u>%</u> 2.89 3.26 2.71 2.79	<u>%</u> 0.21 0.21 0.32 0.35	<u>%</u> 1.12 1.27 1.07 1.27	<u>%</u> 0.44 0.56 0.47 0.58	<u>%</u> 0.33 0.34 0.32 0.33	<u>ug/g</u> 11.8 11.7 11.3 12.8	<u>ug/g</u> 29.0 25.5 29.1 34.2	<u>ug/g</u> 108 109 115 162	<u>ug/g</u> 44.8 47.2 43.4 39.3	$ \frac{\%}{0.06} 0.08 0.04 0.05 $
1 2 3 4 5	0 45 45 45 45	$ \frac{\underline{S}}{0} $ 0 24 24 24 24	<u>B</u> 0 0	<u>Zn</u> 0 0 0 0 7	0 0 0 0 0	<u>%</u> 0.38 0.36 0.35 0.33 0.41	<u>%</u> 2.89 3.26 2.71 2.79 3.78	<u>%</u> 0.21 0.21 0.32 0.35 0.37	<u>%</u> 1.12 1.27 1.07 1.27 1.20	<u>%</u> 0.44 0.56 0.47 0.58 0.54	<u>%</u> 0.33 0.34 0.32 0.33 0.29	<u>ug/g</u> 11.8 11.7 11.3 12.8 13.4	<u>ug/g</u> 29.0 25.5 29.1 34.2 41.3	<u>ug/g</u> 108 109 115 162 122	<u>ug/g</u> 44.8 47.2 43.4 39.3 61.2	$\frac{\%}{0.06} \\ 0.08 \\ 0.04 \\ 0.05 \\ 0.05$
1 2 3 4 5 6	0 45 45 45 45 45	$ \frac{S}{0} $ 0 24 24 24 24 24	<u>B</u> 0 0 1 1 1	<u>Zn</u> 0 0 0 7 7 7	0 0 0 0 0 2	$ \frac{96}{0.38} 0.36 0.35 0.33 0.41 0.35 $	% 2.89 3.26 2.71 2.79 3.78 2.87	% 0.21 0.21 0.32 0.35 0.37 0.31	<u>%</u> 1.12 1.27 1.07 1.27 1.20 0.96	<u>%</u> 0.44 0.56 0.47 0.58 0.54 0.45	% 0.33 0.34 0.32 0.33 0.29 0.35	<u>ug/g</u> 11.8 11.7 11.3 12.8 13.4 11.9	<u>ug/g</u> 29.0 25.5 29.1 34.2 41.3 37.0	<u>ug/g</u> 108 109 115 162 122 87	<u>ug/g</u> 44.8 47.2 43.4 39.3 61.2 46.7	<u>%</u> 0.06 0.08 0.04 0.05 0.05 0.04
1 2 3 4 5 6 7	0 45 45 45 45 45 45	$ \frac{S}{0} $ 0 24 24 24 24 24 36	<u>B</u> 0 0 1 1 1 2	<u>Zn</u> 0 0 0 7 7 7 7	0 0 0 0 0 2 2	$ \frac{96}{0.38} 0.36 0.35 0.33 0.41 0.35 0.33 0.33 $	% 2.89 3.26 2.71 2.79 3.78 2.87 3.05	% 0.21 0.21 0.32 0.35 0.37 0.31 0.32	% 1.12 1.27 1.07 1.27 0.96 1.02	$\frac{\%}{0.44} \\ 0.56 \\ 0.47 \\ 0.58 \\ 0.54 \\ 0.45 \\ 0$	% 0.33 0.34 0.32 0.33 0.29 0.35 0.36	<u>ug/g</u> 11.8 11.7 11.3 12.8 13.4 11.9 10.9	<u>ug/g</u> 29.0 25.5 29.1 34.2 41.3 37.0 36.2	<u>ug/g</u> 108 109 115 162 122 87 84	<u>ug/g</u> 44.8 47.2 43.4 39.3 61.2 46.7 55.5	$\frac{\%}{0.06} \\ 0.08 \\ 0.04 \\ 0.05 \\ 0.05 \\ 0.04 \\ 0.06$
1 2 3 4 5 6 7 8	0 45 45 45 45 45 45 45 45	$ \frac{S}{0} 0 24 24 24 24 36 36 36 $	$ \underline{B} \\ 0 \\ 0 \\ 1 \\ 1 \\ 2 \\ 3 $	<u>Zn</u> 0 0 0 7 7 7 7 7	0 0 0 0 0 2 2 2 2	$ \frac{96}{0.38} 0.36 0.35 0.33 0.41 0.35 0.33 0.33 0.36 $	% 2.89 3.26 2.71 2.79 3.78 2.87 3.05 3.16	$\frac{\%}{0.21} \\ 0.21 \\ 0.32 \\ 0.35 \\ 0.37 \\ 0.31 \\ 0.32 \\ 0.34$	% 1.12 1.27 1.07 1.27 0.96 1.02 1.20	$\frac{\%}{0.44} \\ 0.56 \\ 0.47 \\ 0.58 \\ 0.54 \\ 0.45 \\ 0.45 \\ 0.50 \\ 0$	$\frac{\%}{0.33} \\ 0.34 \\ 0.32 \\ 0.33 \\ 0.29 \\ 0.35 \\ 0.36 \\ 0.30$	<u>ug/g</u> 11.8 11.7 11.3 12.8 13.4 11.9 10.9 11.6	<u>ug/g</u> 29.0 25.5 29.1 34.2 41.3 37.0 36.2 37.4	<u>ug/g</u> 108 109 115 162 122 87 84 117	<u>ug/g</u> 44.8 47.2 43.4 39.3 61.2 46.7 55.5 60.9	$\frac{\%}{0.06} \\ 0.08 \\ 0.04 \\ 0.05 \\ 0.05 \\ 0.04 \\ 0.06 \\ 0.05$

UIP = Bypass Protein, ADF = Acid Detergent Fibre, NDF = Neutral Detergent Fibre, TDN = Total Digestible Nutrients,

NE = Net Energy, L = Lactation, M = Maintenance, G = Gain and RFV = Relative Feed Value.

5. Other Agronomic Practices

5.1 Effect of Fungicides on Diseases and Yield in Spring Cereals Treatment Details

<u>Trt #</u>	CROP	<u>PRODUCT</u>	CROP STAGE/TIME OF APPLICATION
1	Spring Wheat	None	No fungicides sprayed
2	Spring Wheat	Stratego	Stratego sprayed at tillering
3	Spring Wheat	Stratego + Prosaro	Stratego sprayed at tillering + Prosaro sprayed at heading (20% flowering)
4	Spring Wheat	Stratego + Prosaro + Caramba	Stratego sprayed at tillering + Prosaro sprayed at heading (20% flowering) + Caramba sprayed one week later
5	Malthing Barley	y None	No fungicides sprayed
6	Malthing Barle	y Stratego	Stratego sprayed at tillering
7	Malthing Barle	y Stratego + Prosaro	Stratego sprayed at tillering + Prosaro sprayed at heading (20% flowering)
8	Malthing Barley	y Stratego + Prosaro + Caramba	Stratego sprayed at tillering + Prosaro sprayed at heading (20% flowering) + Caramba sprayed one week later
9	Spring Oats	None	No fungicides sprayed
10	Spring Oats	Stratego	Stratego sprayed at tillering
11	Spring Oats	Stratego + Prosaro	Stratego sprayed at tillering + Prosaro sprayed at heading (20% flowering)
12	Spring Oats	Stratego + Prosaro + Caramba	Stratego sprayed at tillering + Prosaro sprayed at heading (20% flowering) + Caramba sprayed one week later

<u>PRODUCT</u> <u>RATE OF APPLICATION</u>

Stratego	572 ml/ha
Prosaro	800 ml/ha
Caramba	1.02 L/ha

CROPVARIETYSpring WheatAAC WheatlandMalthing BarleyCDC BowSpring OatsAC Rigodon

Notes:

Trt: Treatment This research was part of Anmol Rana's MSc. Thesis

5.1 Effect of Fungicides on Diseases and Yield in Spring Cereals...Cont'd from previous page

PLANTING DATE:	May 5, 2020					
FERTILIZERS:	95 kg N/ha (152 kg/ha 46-0-0, 38 kg/ha 11-52-0, 100 kg/ha 21-0-0-24)					
	20 kg P ₂ O ₅ /ha (38 kg/ha 11-52-0)					
	20 kg K ₂ O/ha (33 kg/ha 0-0-60)	24 kg S/ha (100 kg/ha 21-0-0-24)				
HERBICIDES:	Logic M @ 1.25 L/ha applied June 1, 2020					
HARVEST DATES:	Oats and Barley August 12, 2020; Wheat August 16,	2020				
PREVIOUS CROP:	Canola					
		YIELD				

				•••••	\dots I ILLD.	• • • • • • • • • • • • • • • • • • • •			
			SEED 秦	GRAIN b	STRAW ^a	BIOMASS ^b	HARVEST	HEIGHT	PLANTS
Trt	CROP	TREATMENT	kg/kg NUTRIENTS ^b	<u></u>	(MT/ha)	<u></u>	<u>INDEX (%)</u> ^b	<u>(cm)</u> ^{<i>a</i>}	$/m^{2}$ a
1	Spring Wheat	None	26.4	4.07	2.82 b	6.90	61.6	68 <i>bc</i>	489 bcd
1									
2	Spring Wheat	Stratego	26.8	4.12	4.24 <i>ab</i>	8.36	48.9	72 <i>bc</i>	533 abcd
3	Spring Wheat	Stratego + Prosaro	28.0	4.32	4.74 <i>ab</i>	9.05	47.8	66 c	524 <i>abcd</i>
4	Spring Wheat	Stratego + Prosaro + Caramba	23.9	3.68	3.44 <i>ab</i>	7.13	51.7	68 c	373 d
5	Malthing Barley	y None	30.0	4.62	5.22 a	9.84	47.3	63 c	830 abc
6	Malthing Barley	Stratego	25.6	3.94	4.23 ab	8.17	48.4	60 c	963 a
7	Malthing Barley	Stratego + Prosaro	24.3	3.75	4.34 ab	8.09	46.2	58 c	873 <i>abc</i>
8	Malthing Barley	Stratego + Prosaro + Caramba	27.8	4.28	5.52 a	9.81	43.8	59 c	916 <i>ab</i>
9	Spring Oats	None	28.6	4.40	3.84 ab	8.24	53.6	82 <i>ab</i>	330 d
10	Spring Oats	Stratego	26.7	4.11	3.46 <i>ab</i>	7.57	54.2	83 <i>ab</i>	443 abcd
11	Spring Oats	Stratego + Prosaro	27.5	4.23	4.15 ab	8.38	50.4	85 <i>ab</i>	453 bcd
12	Spring Oats	Stratego + Prosaro + Caraml	29.1	4.48	3.94 ab	8.43	53.3	88 a	400 cd
		MEAN	27.1	4.17	4.16	8.33	50.6	71	594
		C.V. (%)		14.8	24.7	16.8	13.4	16.3	47.6
		PR>F		0.7300	0.0252	0.1200		<0.0001	<0.0001
		SE		0.096	0.159	0.217	1.05	1.8	43.8

Notes:

♣ Indicates nutrients utilization efficiency.

a Means followed by the same letter codes were not significantly different based on Tukey's test (P=0.05)

b Letter codes not displayed for the means that were not affected by the treatments (P>0.05)

5.1 Effect of Fungicides on Diseases and Yield in Spring Cereals Cont'd from previous page

<u>Trt</u>	<u>CROP</u>	<u>TREATMENT</u>	DAY <u>HEAD ^a</u>	S TO <u>MATURE ^a</u>	LODGING (0-9)	1000 K <u>WT.(g)</u>	TEST WT. <u>(kg/hl)</u>
1	Spring Wheat	None	52 b	89 <i>a</i>	0	39	80
	Spring Wheat	Stratego	51 <i>b</i>	89 a	0	42	80
	Spring Wheat	Stratego + Prosaro	54 b	88 a	0	43	81
	Spring Wheat	Stratego + Prosaro + Caramba	52 b	89 a	0	39	81
	Malthing Barle	e	60 a	87 a	0	51	66
	Malthing Barley	•	60 <i>a</i>	87 <i>a</i>	0	54	64
	••••	Stratego + Prosaro	60 <i>a</i>	86 a	0	53	57
		Stratego + Prosaro + Caramba	60 <i>a</i>	87 <i>a</i>	0	54	61
9	Spring Oats	None	54 <i>b</i>	87 a	0	37	53
10	Spring Oats	Stratego	54 <i>b</i>	85 a	0	40	52
11	Spring Oats	Stratego + Prosaro	54 <i>b</i>	86 a	0	42	52
	Spring Oats	Stratego + Prosaro + Caramł	54 b	86 a	0	42	52
		MEAN	56	88	0	46	69
		C.V. (%)	11.1	1.8	-	-	-
		PR>F	<0.0001	0.0049	_	_	-
		SE	0.9	0.3	_	-	-
		SE	0.7	0.5			

Notes:

a Letter codes not displayed for the means were not affected by the treatments (P>0.05)

b Letter codes not displayed for the means that were not affected by the treatments (P>0.05)

• Lodging is rated on the scale 0-9, where 0 = standing and 9 = flat.

5.1 Effect of Fungicides on Diseases and Yield in Spring Cereals Cont'd from previous page

				DISEASES*				
					TAN	SPOT		
Trt	t <u>CROP</u>	TREATMENT	BYDV	SEPTORIA ^a	<u>SPOT</u>	BLOTCH ^a	RUST b	<u>FHB</u>
1	Spring Wheat	None	0	5 a	0	$0 \ b$	0	0
2	Spring Wheat	Stratego	0	4 <i>a</i>	0	$0 \ b$	0	0
3	Spring Wheat	Stratego + Prosaro	0	1 <i>c</i>	0	1 <i>b</i>	0	0
4	Spring Wheat	Stratego + Prosaro + Caramba	0	1 <i>c</i>	0	$0 \ b$	0	0
5	Malthing Barle	None	0	0 <i>c</i>	0	4 <i>a</i>	0	0
6	Malthing Barley	Stratego	0	0 c	0	5 a	1	0
7	Malthing Barley	Stratego + Prosaro	0	0 c	0	1 <i>b</i>	0	0
8	Malthing Barley	Stratego + Prosaro + Caramba	0	0 c	0	1 <i>b</i>	0	0
9	Spring Oats	None	0	5 a	0	0 <i>b</i>	0	0
10	Spring Oats	Stratego	0	4 <i>ab</i>	0	$0 \ b$	0	0
11	Spring Oats	Stratego + Prosaro	0	2 <i>bc</i>	0	$0 \ b$	0	0
12	Spring Oats	Stratego + Prosaro + Caramł	0	0 <i>c</i>	0	0 <i>b</i>	0	0
			0		0		0	0
		MEAN	0	2	0	1	0	0
		C.V. (%)	-	122.0	-	178.7	393.5	-
		PR>F	-	<0.0001	-	<0.0001	0.5900	-
		SE	-	0.3	-	0.3	0.1	-

Notes:

a Letter codes not displayed for the means were not affected by the treatments (P>0.05)

b Letter codes not displayed for the means that were not affected by the treatments (P>0.05)

* Diseases are rated on the scale 0-9, where 0 = free from infection and 9 = 89 % infection.

5.1 Effect of Fungicides on Diseases and Yield in Spring Cereals...Cont'd from previous page

			YIELD.						
	SEED 秦	GRAIN b	STRAW ^a	BIOMASS ^b	HARVEST	HEIGHT	PLANTS	1000 K	TEST WT.
CROP	kg/kg NUTRIENTS ^b	<u></u>	(MT/ha).	<u></u>	<u>INDEX (%)</u> ^{<i>a</i>}	<u>(cm)</u> ^{<i>a</i>}	$/\mathrm{m}^{2}$ a	<u>WT.(g)</u> ^{<i>a</i>}	<u>(kg/hl) ^a</u>
Spring Wheat	26.2	4.04	3.85 b	7.89	52.1 <i>ab</i>	68 b	467 b	41 <i>b</i>	80 a
Malthing Barley	27.0	4.16	4.82 <i>a</i>	8.98	46.6 b	60 c	897 a	53 a	62 <i>b</i>
Spring Oats	28.1	4.33	3.85 b	8.18	52.9 a	85 a	404 <i>b</i>	40 <i>b</i>	52 c
MEAN	27.1	4.18	4.17	8.35	50.6	71	589	45	65
C.V. (%)	14.8	14.8	24.7	16.8	13.4	16.3	47.6	13.9	18.4
PR>F	0.4900	0.4900	0.0150	0.1100	0.0260	<0.0001	<0.0001	<0.0001	<0.0001
SE	0.62	0.096	0.159	0.217	1.05	1.8	43.8	1.0	1.8

	YIELD									
	SEED 秦	GRAIN b	STRAW ^b	BIOMASS ^b	HARVEST	HEIGHT ^b	PLANTS ^b	1000 K	TEST WT.	
TREATMENT	kg/kg NUTRIENTS ^b	<u></u>	(MT/ha).	<u></u>	<u>INDEX (%) ^b</u>	<u>(cm)</u>	$/m^2$	<u>WT.(g)</u>	<u>(kg/hl)</u>	
None	28.5	4.39	4.07	8.46	53.5	72	555	43	65	
Stratego	26.3	4.04	4.00	8.05	50.3	71	716	46	65	
Stratego + Prosaro	26.8	4.12	4.44	8.56	48.1	69	585	46	65	
Stratego + Prosaro + Caramba	26.9	4.14	4.19	8.33	50.1	73	531	44	65	
MEAN	27.1	4.17	4.18	8.35	50.5	71	597	45	65	
C.V. (%)	14.8	14.8	24.7	16.8	13.4	16.3	47.6	13.9	18.4	
PR>F	0.6200	0.6200	0.8000	0.8700	0.3500	0.9100	0.5300	0.5700	1.0000	
SE	0.62	0.096	0.159	0.217	1.05	1.8	43.8	1.0	1.8	

Notes:

♣ Indicates nutrients utilization efficiency.

a Means followed by the same letter codes were not significantly different based on Tukey's test (P=0.05)

b Letter codes not displayed for the means that were not affected by the treatments (P>0.05)

5.1 Effect of Fungicides on Diseases and Yield in Spring Cereals Cont'd from previous page

e ont a nom providus puge						DIGE			
	DISEASES*								
	DAY	ζ S ΤΟ	LODGING♠			TAN	SPOT		
CROP	HEAD ^a	MATURE ^a	(0-9)	BYDV	SEPTORIA ^a	<u>SPOT</u>	BLOTCH ^a	<u>RUST</u>	<u>FHB</u>
Spring Wheat	52 c	89 a	0	0	3 a	0	$0 \ b$	0	0
Malthing Barley	60 <i>a</i>	87 <i>b</i>	0	0	$0 \ b$	0	3 a	0	0
Spring Oats	54 b	86 b	0	0	3 a	0	0 <i>b</i>	0	0
MEAN	55	87	0	0	2	0	1	0	0
C.V. (%)	11.1	1.8	_	_	122.0	_	178.7	393.5	_
PR>F	<0.0001	<0.0001	-	-	0.0005	-	<0.0001	0.2840	-
SE	0.9	0.3	-	-	0.3	-	0.3	0.1	-
	015	0.0							
						DISE	ASES*		
	DAY	/S TO	LODGING♠			TAN	SPOT		
TREATMENT	HEAD ^b	MATURE ^b	(0-9)	<u>BYDV</u>	<u>SEPTORIA</u> ^{<i>a</i>}	<u>SPOT</u>	BLOTCH ^b	<u>RUST</u>	<u>FHB</u>
None	56	87	0	0	3 a	0	1	0	0
Stratego	56	87	0	0	2 <i>ab</i>	0	2	0	0
Stratego + Prosaro	56	87	0	0	1 <i>b</i>	0	0	0	0
Stratego + Prosaro + Caramba	55	87	0	0	$0 \ b$	0	0	0	0
MEAN	56	87	0	0	2	0	1	0	0
C.V. (%)	11.1	1.8	-	-	122.0	-	178.7	393.5	-
							1,0.,	270.0	

-

-

0.0021

0.3

-

-

Notes:

PR>F

SE

a Letter codes not displayed for the means were not affected by the treatments (P>0.05)

0.7200

0.9

b Letter codes not displayed for the means that were not affected by the treatments (P>0.05)

0.9500

0.3

* Diseases are rated on the scale 0-9, where 0 = free from infection and 9 = 89 % infection.

• Lodging is rated on the scale 0-9, where 0 = standing and 9 = flat.

0.3800

0.1

_

-

0.0900

0.3

-

-

5.2 Winter Rye Date of Seeding

PLANTING DATE:	As per Treatments	
FERTILIZERS:	120 kg N/ha (173 kg/ha 46-0-0; 91 kg/ha 44-0-0)	5.6 kg S/ha (35 kg/ha 0-0-0-16-20)
	50 kg P ₂ O ₅ /ha (111 kg/ha 0-45-0)	7 kg Zinc/ha (35 kg/ha 0-0-0-16-20)
	20 kg K ₂ O/ha (33 kg/ha 0-0-60)	1 kg Boron/ha (7 kg/ha 0-0-0-15)
HERBICIDE:	Refine SG @ 30 g/ha + 0.2% v/v surfactant; applied	d on September 23, 2019
HARVEST DATE:	August 12, 2020	
PREVIOUS CROP:	Fallow	
VARIETY:	Hazlet	

	YIELD									
	GRAIN \clubsuit^a	GRAIN ^a	STRAW ^a	BIOMASS ^a	HARVEST	DAYS TO				
	<u>kg/kg NUTRIENTS</u>	-	(MT/ha).	<u></u>	<u>INDEX (%) ^b</u>	MATURE ^a				
August 25, 2019	19.5 <i>ab</i>	3.97 ab	5.75 a	9.72 a	40.8	336 a				
September 05, 2019	21.0 a	4.28 a	5.86 a	10.13 a	42.2	327 b				
September 15, 2019	26.5 a	5.40 a	6.84 a	12.24 a	44.1	320 c				
September 25, 2019	23.8 a	4.86 a	5.98 a	10.83 a	44.7	308 d				
October 05, 2019	20.7 <i>ab</i>	4.22 ab	5.29 ab	9.51 ab	43.8	300 e				
October 15, 2019	12.3 <i>b</i>	2.51 b	3.91 <i>b</i>	6.42 <i>b</i>	39.2	296 f				
MEAN	20.7	4.21	5.60	9.81	42.5	314				
C.V. (%)	26.8	26.8	19.9	22.1	8.3	4.7				
PR>F	0.0015	0.0015	0.0010	0.0006	0.2000	<0.0001				
SE	1.13	0.230	0.228	0.443	0.7	2.3				
LSD (0.05)	5.6	1.10	1.10	2.10	NS	1				

	LODGING ▼	PLANTS & TILLERS	HEIGHT	1000 K	TEST WT.
TREATMENTS	<u>(0-9)</u>	$/\mathrm{m}^{2 a}$	$(\text{cm})^{a}$	<u>WT.(g)</u>	<u>(kg/hl)</u>
August 25, 2019	0	650 a	122 <i>a</i>	31	66
September 05, 2019	0	353 ab	120 a	32	67
September 15, 2019	0	407 ab	126 a	37	67
September 25, 2019	0	383 ab	111 a	37	67
October 05, 2019	0	380 <i>ab</i>	107 a	37	67
October 15, 2019	0	273 b	108 a	39	66
	0	400	117	26	
MEAN	0	408	116	36	66
C.V. (%)	-	41.7	9.5	-	-
PR>F	-	0.0220	0.0500	-	-
SE	-	34.7	2.3	-	-
LSD (0.05)	-	201	14	-	-

Notes:

✤ Indicates nutrients utilization efficiency

 \checkmark Lodging is rated on the scale 0-9, where 0 = standing and 9 = flat.

a Means followed by the same letter codes were not significantly different based on Tukey's test (P=0.05)

b Letter codes not displayed for the means were not affected by the treatments (P>0.05)

5.2 Winter Rye Date of Seeding...Cont'd from previous page Averaged over 2018-2020

	YIELD								
	GRAIN kg/kg ♣ ^a	GRAIN ^{<i>a</i>}	STRAW ^{<i>a</i>}	BIOMASS ^{<i>a</i>}	HARVEST	1000 K	TEST WT.	DAYS TO	HEIGHT
TREATMENTS	<u>NUTRIENTS</u>	<u></u>	(MT/ha)	<u></u>	<u>INDEX (%) ^a</u>	$\underline{WT.(g)}^{a}$	<u>(kg/hl)^{<i>a</i>}</u>	MATURE ^a	<u>(cm)</u> ^{<i>a</i>}
August 25	36.3 ab	5.62 abc	6.99 a	12.61 ab	40.3 b	32.4 c	69 ab	348 a	122 a
September 05	38.7 a	6.36 ab	7.42 a	13.78 ab	43.9 ab	34.9 b	71 a	341 ab	121 a
September 15	40.0 <i>a</i>	7.25 a	7.82 a	15.07 a	49.8 a	37.7 a	69 ab	336 <i>abc</i>	121 a
September 25	33.5 <i>ab</i>	5.40 bc	6.23 <i>ab</i>	11.62 bc	43.7 ab	38.3 a	70 <i>ab</i>	328 abc	106 <i>b</i>
October 05	28.8 ab	4.23 cd	4.81 bc	9.03 cd	41.5 <i>b</i>	39.1 a	69 <i>ab</i>	324 <i>bc</i>	104 <i>b</i>
October 15	22.1 <i>b</i>	2.97 d	4.01 c	6.98 d	37.6 <i>b</i>	39.0 <i>a</i>	67 <i>b</i>	320 c	107 <i>b</i>
Mean	33.2	5.30	6.21	11.52	42.8	36.9	69	333	113
C.V. (%)	43.4	38.2	30.7	33.7	15.7	8.0	3.7	6.0	10.8
PR>F	0.0168	<0.0001	<0.0001	<0.0001	0.0001	<0.0001	0.0440	0.0013	<0.0001
SE	1.7	0.239	0.225	0.457	0.79	0.3	0.3	2.3	1.5
LSD (0.05)	11.0	1.20	1.10	2.30	4.7	1.4		15	8

Notes:

♣ Indicates nutrients utilization efficiency

a Means followed by the same letter codes were not significantly different based on Tukey's test (P=0.05)

b Letter codes not displayed for the means were not affected by the treatments (P>0.05)

5.3 Winter Rye Date and Rate of Seeding

Hazlet

PLANTING DATE:	As per Treatments	
FERTILIZERS:	120 kg N/ha (173 kg/ha 46-0-0; 91 kg/ha 44-0-0)	5.6 kg S/ha (35 kg/ha 0-0-0-16-20)
	50 kg P ₂ O ₅ /ha (111 kg/ha 0-45-0)	7 kg Zinc/ha (35 kg/ha 0-0-0-16-20)
	20 kg K ₂ O/ha (33 kg/ha 0-0-60)	1 kg Boron/ha (7 kg/ha 0-0-0-15)
HERBICIDE:	Refine SG @ 30 g/ha + 0.2% v/v surfactant; applied on September 23, 2019	
HARVEST DATE:	August 12, 2020	
PREVIOUS CROP:	Fallow	

VARIETY:

		YIELD						
		GRA	IN ♣	GRAIN ^{<i>a</i>}	STRAW	^a BION	MASS ^a	HARVEST ^b
SEEDING DATE	SEEDING RATE	<u>kg/kg NU'</u>	<u>TRIENTS</u>	<u>.</u>	(MT/	<u>ha)</u>		<u>INDEX (%)</u>
September 25	1×	19.	4 <i>a</i>	3.95 a	4.82 a	8.77	' a	45
October 05	1.25×	12.	8 <i>ab</i>	2.61 ab	4.62 <i>a</i>	7.22	l ab	35
October 15	1.25×	10.	5 <i>ab</i>	2.13 ab	2.91 b	5.37	bc	40
October 25	1.5×	7.4	4 <i>b</i>	1.51 <i>b</i>	2.03 b	3.54	c	43
MEAN		12.	5	2.55	3.59	6.23	5	40.6
C.V. (%)		49.	3	49.3	39.5	41.0)	19.3
PR>F		0.016	6	0.0170	0.0008	0.0029)	0.3900
SE		1.5	5	0.315	0.355	0.638	3	1.96
LSD (0.05)		6.	9	1.40	1.20	2.40)	NS
		1000 K	TEST WT.	PLANTS & TI	LLERS	HEIGHT		
SEEDING DATE	SEEDING RATE	<u>WT.(g)</u>	<u>(kg/hl)</u>	$/\mathrm{m}^{2 b}$		<u>(cm)</u> ^{<i>a</i>}	DAYS T	O MATURE ^a
September 25	1×	39	67	517		118 a	308	a
October 05	1.25×	39	68	467		111 <i>a</i>	302	b
October 15	1.25×	39	67	450		103 a	297	С
October 25	1.5 imes	38	68	373		98 a	295	d
MEAN		39	67	452		108	300	
C.V. (%)		-	-	24.4		10.2	1.7	
PR>F		-	-	0.3800		0.0560	<0.0001	
SE		-	-	27.6		2.8	1.3	
LSD (0.05)		-	-	NS		14	1	

Notes:

✤ Indicates nutrients utilization efficiency

a Means followed by the same letter codes were not significantly different based on Tukey's test (P=0.05)

b Letter codes not displayed for the means not affected by the treatments (P>0.05)

5.3 Winter Rye Date and Rate of Seeding...Cont'd from previous page Averaged over 2019-2020

	YIELD							
		GRAIN 秦	GRAIN	STRAW	BIOMASS	HARVEST	1000 K	TEST WT.
SEEDING DATE	SEEDING RATE	<u>kg/kg NUTRIENTS</u>	<u></u>	(MT/ha)	<u></u>	<u>INDEX (%)</u>	<u>WT.(g)</u>	<u>(kg/hl)</u>
September 25	1×	72.0	4.16	4.64	8.80	47	40	68
October 05	1.25×	39.9	2.48	3.48	5.96	43	38	68
October 15	1.25×	27.5	1.85	2.51	4.52	40	42	68
October 25	$1.5 \times$	14.3	1.13	1.51	2.64	44	39	68
MEAN		38.4	2.40	3.04	5.48	43.5	40	68

		HEIGHT	DAYS TO
SEEDING DATE	SEEDING RATE	<u>(cm)</u>	MATURE
September 25	1×	112	317
October 05	1.25×	103	310
October 15	1.25×	98	302
October 25	1.5×	92	297
MEAN		101	306

Notes:

Indicates nutrients utilization efficiency

▼ Lodging is rated on the scale 0-9, where 0 = standing and 9 = flat.

5.4 Effect of Winter Rye Cover Crop	ping on Spring Crops	142
PLANTING DATE:	June 6, 2020	
FERTILIZERS:	Flax, Spring Wheat and Spring Barley:	
	70 kg N/ha (152 kg 46-0-0), 20 kg P $_2O_5$ /ha (44 kg 0-45-0), 20 kg K $_2O$ /ha (33 kg/ha 0-0-60)	
	Canola:	
	180 kg N/ha (391 kg 46-0-0, 100 kg 21-0-0-24), 20 kg P ₂ O ₅ /ha (44 kg 0-45-0), 20 kg K ₂ O/ha (33 kg/ha 0-0-60))
	24 kg S/ha (100 kg 21-0-0-24)	
	Soybean and Lentils:	
	45 kg N/ha (98 kg 46-0-0), 20 kg $\rm P_2O_5/ha$ (44 kg 0-45-0), 20 kg $\rm K_2O/ha$ (33 kg/ha 0-0-60)	
HERBICIDE:	Roundup @ 3 L/ha applied pre - emergent; June 5, 2020	
HARVEST DATE:	October 27, 2020	
PREVIOUS CROP:	Annual Forage	

FACTOR A X B		
FACTOR A	FACTOR B	BIOMASS (MT/ha) ^b
Winter Rye with Fertilizer	Spring Wheat	0.56
Winter Rye with Fertilizer	Spring Barley	3.39
Winter Rye with Fertilizer	Canola	5.11
Winter Rye with Fertilizer	Soybean	0.22
Winter Rye with Fertilizer	Lentils	1.03
Winter Rye with Fertilizer	Flax	4.67
Fallow	Spring Wheat	1.11
Fallow	Spring Barley	3.67
Fallow	Canola	4.11
Fallow	Soybean	2.00
Fallow	Lentils	1.56
Fallow	Flax	3.69
Winter Rye without Fertilizer	Spring Wheat	0.75
Winter Rye without Fertilizer	Spring Barley	3.58
Winter Rye without Fertilizer	Canola	8.78
Winter Rye without Fertilizer	Soybean	1.42
Winter Rye without Fertilizer	Lentils	0.81
Winter Rye without Fertilizer	Flax	0.03
MEAN		2.85
C.V. (%)		132.3
$PR > F - (A \times B)$		0.3618
SE		0.407
LSD (0.05)		NS

Notes:

♣Indicates nutrients utilization efficiency

Pre seeding soil analysis 0-15 cm (ppm):

Winter Rye with Fertilizer: Ammoniacal N: 7, Nitrate N: 17, Total N: 24

Winter Rye with No Fertilizer: Ammoniacal N: 7, Nitrate N: 9, Total N: 16

Fallow: Ammoniacal N: 7, Nitrate N: 19, Total N: 26

Only biomass was recorded because the crops didn't reach maturity

a Means followed by the same letter codes were not significantly different based on Tukey's test (P=0.05)

b Letter codes not displayed for the means were not affected by the treatment (P>0.05)

5.4 Effect of Winter Rye Cover Cropping on Spring Crops Cont'd from Previous page

FACTOR A	BIOMASS (MT/ha) ^b
Winter Rye with Fertilizer	2.60
Fallow	2.67
Winter Rye without Fertilizer	2.56
MEAN	2.61
C.V. (%)	132.3
PR>F - A	0.9917
SE	0.407
LSD (0.05)	NS

FACTOR B	BIOMASS (MT/ha) ^a
Spring Wheat	0.81 <i>b</i>
Spring Barley Canola	4.02 <i>ab</i> 6.00 <i>a</i>
Soybean	0.92 <i>b</i>
Lentils	1.13 <i>b</i>
Flax	2.80 ab
MEAN	2.61
C.V. (%)	132.3
PR>F - B	0.0003
SE	0.407
LSD (0.05)	2.47

Notes:

♣Indicates nutrients utilization efficiency

Only biomass was recorded because the crops didn't reach maturity

a Means followed by the same letter codes were not significantly different based on Tukey's test (P=0.05)

b Letter codes not displayed for the means were not affected by the treatment (P>0.05)

5.5 Optimizing Seeding Rate in Kernza and Comparing its Grain Production Potential with Perennial Rye and in Mixture with Alfalfa

PLANTING DATE:	July 10, 2017
FERTILIZER:	70 kg N/ha (153 kg/ha 46-0-0)
	20 kg P ₂ O ₅ /ha (45 kg/ha 0-45-0)
	20 kg K ₂ O/ha (34 kg/ha 0-0-60)
HERBICIDE:	None
HARVEST DATE:	August 31, 2020
PREVIOUS CROP:	Soybean

	YIELD					
	GRAIN \clubsuit^a	GRAIN ^a	STRAW ^a	BIOMASS ^a	HARVEST ^a	HEIGHT ^a
TREATMENTS	<u>kg/kg NUTRIENTS</u>	<u></u>	(MT/ha).	<u></u>	<u>INDEX (%)</u>	<u>(cm)</u>
2						
Kernza @ 70 seed/m ²	1.9	0.21	8.94	9.14	2.1	136
Kernza @ 90 seed/m ²	1.7	0.19	8.84	9.02	2.1	133
Kernza @ 110 seed/m ²	3.3	0.36	10.41	10.77	3.3	133
Kernza @ 130 seed/m ²	2.7	0.30	9.81	10.11	2.8	136
Ace 1 @ 250 seed/m ²	N/A	N/A	N/A	N/A	N/A	N/A
MEAN	2.4	0.26	9.50	9.76	2.6	134
C.V. (%)	47.2	58.4	12.6	13.5	47.2	4.1
PR>F	0.1921	0.1921	0.1022	0.0823	0.3343	0.6760
SE	0.35	0.038	0.300	0.328	0.31	1.4
LSD (0.05)	NS	NS	NS	NS	NS	NS

Notes:

Ace 1 perennial rye produced seed only in 2018 and didn't survive thereafter!

a Letter codes not displayed for the means were not affected by the treatment (P>0.05).

5.5 Optimizing Seeding Rate in Kernza and Comparing its Grain Production Potential with Perennial Rye and in Mixture with Alfalfa Average Over 2018-2020

	YIELD						
	GRAIN \bigstar^a	GRAIN ^a	STRAW ^a	BIOMASS ^a	HARVEST	HEIGHT	
	<u>kg/kg NUTRIENTS</u>	<u></u>	(MT/ha))	<u>INDEX (%)^{<i>a</i>}</u>	<u>(cm)</u> ^{<i>a</i>}	
TREATMENTS							
	5.5	1.18	11.87	13.06	8.1	143	
Kernza @ 70 seed/m ²	5.1	1.09	11.88	12.97	7.7	140	
Kernza @ 90 seed/m ²	6.2	1.30	12.86	14.15	8.5	142	
Kernza @ 110 seed/m ²	5.5	1.16	12.60	13.76	7.7	141	
Kernza @ 130 seed/m ²	9.2	1.75	6.26	8.01	21.6	121	
Ace 1 @ 250 seed/m ² *							
	5.6	1.18	12.30	13.49	8.0	142	
MEAN	47.3	57.7	25.9	27.0	60.5	9.8	
C.V. (%)	0.7700	0.9200	0.7390	0.7900	0.9600	0.9300	
PR>F	0.38	0.098	0.426	0.489	0.76	1.9	
SE	NS	NS	NS	NS	NS	NS	
LSD (0.05)							

Notes:

*Ace 1 perennial rye produced seed only in 2018 and didn't survive thereafter!

a Letter codes not displayed for the means were not affected by the treatment (P>0.05)

5.6 Alternate Forage Legumes

PLANTING DATE:	June 11, 2018					
FERTILIZER:	45 kg N/ha (52 kg/ha 46-0-0, 100 kg/ha 21-0-0-24)					
	20 kg P ₂ O ₅ /ha (44 kg/ha 0-45-0)	24 kg S/ha (100 kg/ha 21-0-0-24)				
	60 kg K ₂ O/ha (100 kg/ha 0-0-60)	1 kg B/ha (7 kg/ha 0-0-0-15)				
HARVEST DATE:	June 19 and August 13, 2020					
PREVIOUS CROP:	Annual forages					

	DRY MATTER YIELD (kg/ha)						FRESH MATTER YIELD (kg/ha)				
	2019				2019-2020	2019					
TREATMENTS	<u>TOTAL^a</u>	<u>1st CUT^a</u>	2nd CUT ^b	<u>TOTAL^a</u>	AVERAGE ^a	<u>TOTAL^a</u>	<u>1st CUT^a</u>	2nd CUT ^b	<u>TOTAL^a</u>		
A 16-16-	2450 ~4	2245 ~	1100	2444 ~	2052 ~	12050 L	11050 ~	2041	15000 ~		
Alfalfa	2459 ab	2245 a	1199	3444 a	2952 a	12850 <i>b</i>	11959 a	3841	15800 a		
Galega	641 e	1280 <i>b</i>	574	1854 <i>ab</i>	1248 b	3187 e	6817 <i>b</i>	2322	9139 bc		
Red Clover	3135 a	1958 a	981	2939 ab	3037 a	21527 a	12085 a	3569	15654 <i>a</i>		
Birdfoot Trefoil	1527 cd	1810 <i>a</i>	575	2385 ab	1956 b	8398 cd	12082 <i>a</i>	2265	14347 ab		
Sainfoin seeded @ 20 kg/ha	965 de	946 <i>b</i>	521	1467 b	1215 b	4724 de	4925 b	1652	6577 c		
Sainfoin seeded @ 30 kg/ha	1427 cd	942 <i>b</i>	951	1893 ab	1660 b	7335 cd	5633 b	3492	9125 bc		
Sainfoin seeded @ 40 kg/ha	1381 cd	1034 <i>b</i>	847	1881 ab	1631 b	7131 cd	5466 b	2816	8282 bc		
Sainfoin seeded @ 50 kg/ha	1939 bc	1050 <i>b</i>	490	1540 <i>b</i>	1739 b	10433 bc	6187 b	1779	7966 c		
	1/04	1 400	7(7	2175	1020	0440	0144	2717	100/1		
MEAN	1684	1408	767	2175	1930	9448	8144	2717	10861		
C.V. (%)	48.4	36.8	34.3	32.1	36.4	59.8	40.2	31.0	34.6		
PR>F	<0.0001	<0.0001	0.6600	0.0100	0.0280	<0.0001	<0.0001	0.76	<0.0001		
SE	156.5	183.3	93.0	246.9	248.0	828.8	1157.5	298	1328.8		
LSD (0.05)	457	320	NS	998	587	2419	1848	NS	3923		

Notes:

a Means with the same letter were not statistically different according to the Tukey-Kramer test (P=0.05)

b Letter codes not displayed for the means not affected by the treatment (P>0.05)

5.6 Alternate Forage Legumes Quality Parameters on Dry Matter Basis: First Cut

	CRUDE	SOLUBLE									
	PROTEIN	PROTEIN	ADF-CP	UIP	ADF	NDF	TDN	NEL	NEG	NEM	RFV
VARIETIES	<u>%</u>	<u>% of CP</u>	<u>%</u>	<u>% of CP</u>	<u>%</u>	<u>%</u>	<u>%</u>	<u></u> N	Mcal/kg		
Alfalfa	18.8	35.7	1.71	36.3	33.4	45.0	65.7	1.49	0.82	1.40	130
Galega	13.4	36.1	1.71	36.5	38.5	46.8	65.4	1.48	0.70	1.27	117
Red Clover	19.1	35.8	2.05	36.7	33.0	48.1	66.3	1.51	0.83	1.41	122
Birdfoot Trefoil	19.6	35.7	1.84	34.8	34.2	45.1	65.7	1.49	0.80	1.38	128
Sainfoin seeded @ 20 kg/ha	19.6	35.7	1.84	34.8	34.2	45.1	65.7	1.49	0.80	1.38	128
Sainfoin seeded @ 30 kg/ha	14.7	35.9	2.04	36.6	37.0	47.2	65.6	1.49	0.74	1.31	118
Sainfoin seeded @ 40 kg/ha	12.7	36.2	2.01	36.5	39.1	445.1	65.4	1.48	0.70	1.25	121
Sainfoin seeded @ 50 kg/ha	13.2	36.1	2.00	36.5	37.3	46.4	65.7	1.49	0.73	1.30	120
MEAN	16.4	35.9	1.90	36.1	35.8	96.1	65.696	1.49	0.77	1.34	123
	Р	К	S	Ca	Mg	Cl	Cu	Zn	Fe	Mn	Na
<u>VARIETIES</u>	P <u>%</u>	K <u>%</u>	S <u>%</u>	Ca <u>%</u>	Mg <u>%</u>	Cl <u>%</u>	Cu <u>ug/g</u>	Zn ug/g	Fe <u>ug/g</u>	Mn ug/g	Na <u>%</u>
<u>VARIETIES</u> Alfalfa					-						
	<u>%</u>	<u>%</u>	<u>%</u>	<u>%</u>	<u>%</u>	<u>%</u>	<u>ug/g</u>	<u>ug/g</u>	<u>ug/g</u>	<u>ug/g</u>	<u>%</u>
Alfalfa	<u>%</u> 0.28	<u>%</u> 2.05	<u>%</u> 0.34	<u>%</u> 2.11	<u>%</u> 0.47	<u>%</u> 0.26	<u>ug/g</u> 12.2	<u>ug/g</u> 32.7	<u>ug/g</u> 127	<u>ug/g</u> 28.4	<u>%</u> 0.13
Alfalfa Galega	<u>%</u> 0.28 0.29	<u>%</u> 2.05 2.49	<u>%</u> 0.34 0.37	<u>%</u> 2.11 1.24	<u>%</u> 0.47 0.49	<u>%</u> 0.26 0.28	<u>ug/g</u> 12.2 11.5	<u>ug/g</u> 32.7 33.5	<u>ug/g</u> 127 135	<u>ug/g</u> 28.4 35.3	<u>%</u> 0.13 0.11
Alfalfa Galega Red Clover	<u>%</u> 0.28 0.29 0.26	<u>%</u> 2.05 2.49 2.01	<u>%</u> 0.34 0.37 0.18	<u>%</u> 2.11 1.24 1.68	<u>%</u> 0.47 0.49 0.55	% 0.26 0.28 0.24	<u>ug/g</u> 12.2 11.5 12.0	<u>ug/g</u> 32.7 33.5 32.9	<u>ug/g</u> 127 135 164	<u>ug/g</u> 28.4 35.3 40.7	<u>%</u> 0.13 0.11 0.04
Alfalfa Galega Red Clover Birdfoot Trefoil	<u>%</u> 0.28 0.29 0.26 0.31	<u>%</u> 2.05 2.49 2.01 2.87	<u>%</u> 0.34 0.37 0.18 0.25	<u>%</u> 2.11 1.24 1.68 1.19	<u>%</u> 0.47 0.49 0.55 0.39	% 0.26 0.28 0.24 0.29	<u>ug/g</u> 12.2 11.5 12.0 10.6	<u>ug/g</u> 32.7 33.5 32.9 31.2	<u>ug/g</u> 127 135 164 135	<u>ug/g</u> 28.4 35.3 40.7 33.0	<u>%</u> 0.13 0.11 0.04 0.12
Alfalfa Galega Red Clover Birdfoot Trefoil Sainfoin seeded @ 20 kg/ha	% 0.28 0.29 0.26 0.31 0.26	<u>%</u> 2.05 2.49 2.01 2.87 2.37	% 0.34 0.37 0.18 0.25 0.23	<u>%</u> 2.11 1.24 1.68 1.19 1.19	% 0.47 0.49 0.55 0.39 0.44	% 0.26 0.28 0.24 0.29 0.30	<u>ug/g</u> 12.2 11.5 12.0 10.6 9.2	<u>ug/g</u> 32.7 33.5 32.9 31.2 34.4	<u>ug/g</u> 127 135 164 135 266	<u>ug/g</u> 28.4 35.3 40.7 33.0 32.3	% 0.13 0.11 0.04 0.12 0.08
Alfalfa Galega Red Clover Birdfoot Trefoil Sainfoin seeded @ 20 kg/ha Sainfoin seeded @ 30 kg/ha	% 0.28 0.29 0.26 0.31 0.26 0.27	% 2.05 2.49 2.01 2.87 2.37 2.40	% 0.34 0.37 0.18 0.25 0.23 0.30	<u>%</u> 2.11 1.24 1.68 1.19 1.19 1.46	% 0.47 0.49 0.55 0.39 0.44 0.51	% 0.26 0.28 0.24 0.29 0.30 0.23	<u>ug/g</u> 12.2 11.5 12.0 10.6 9.2 10.9	<u>ug/g</u> 32.7 33.5 32.9 31.2 34.4 33.3	<u>ug/g</u> 127 135 164 135 266 176	<u>ug/g</u> 28.4 35.3 40.7 33.0 32.3 29.1	% 0.13 0.11 0.04 0.12 0.08 0.07

UIP = Bypass Protein, ADF = Acid Detergent Fibre, NDF = Neutral Detergent Fibre, TDN = Total Digestible Nutrients,

NE = Net Energy, L = Lactation, M = Maintenance, G = Gain and RFV = Relative Feed Value.

Note: Quality parameters on dry matter basis were not analyzed for the second cut due to poor growth

5.7 Galega Establishment - Planted in 2018

PLANTING DATE:	As per treatment in 2018	
FERTILIZER:	45 kg N/ha (62 kg/ha 46-0-0, 79 kg/ha 21-0-0-24)	1 kg B/ha (7 kg/ha 0-0-0-15)
	24 kg S/ha (79 kg/ha 21-0-0-24, 35 kg/ha 0-0-0-16-20)	7 kg Zn/ha (35 kg/ha 0-0-0-16-20)
HERBICIDES:	As per treatments	
HARVEST DATE:	First cut: June 15, 2020	
PREVIOUS CROP:	Spring Cereals	

		DRY	MATTER YI	FRESH MATTER YIELD (kg/ł			
		2019	2020	2019-2020	2019	2020	
	<u>TREATMENTS</u>	<u>TOTAL^a</u>	<u>1st CUT^a</u>	AVERAGE 1st CUT ^d	<u>TOTAL^a</u>	<u>1st CUT^a</u>	
1	Alfalfa seeded at 15 kg/ha (check)	4166 a	2570 a	2217	24525 a	14789 <i>a</i>	
2	Galega seeded in spring as early as possible	2594 ab	2052 ab	1858	14251 abc	13596 ab	
3	Allow weeds to come out in spring kill the weeds and then seed galega ^b	3149 ab	1424 <i>b</i>	1899	17804 abc	7670 <i>b</i>	
4	Galega seeded after barley harvested at boot stage ^c	2873 ab	1489 <i>b</i>	1689	13481 bc	9138 ab	
5	Galega seeded mid-July after killing the weeds	2981 ab	1426 b	1767	14902 abc	9190 ab	
6	Galega seeded after pre-plant incorporation of Rival (trifluralin) @ 3L/ha	3784 ab	2008 ab	2369	21236 ab	10774 ab	
7	Galega seeded after pre-plant incorporation of Sencor @ 475g/ha	1826 b	1458 b	1472	9125 c	7829 <i>b</i>	
8	Galega sprayed with Sencor @ 275 g/ha post-emergent	2355 ab	1849 <i>ab</i>	1525	13382 bc	11523 ab	
9	Galega sprayed with Basagram Forte @ 1.75L/ha post- emergent	3664 ab	1573 ab	1952	21040 ab	8743 ab	
10	Galega sprayed with Pursuit @ 210 ml/ha + Ag-Surf @ 0.25% v/v post- emergent	3533 ab	1792 ab	2272	19501 abc	10407 ab	
	MEAN	3093	1764	1902	16925	10366	
	C.V. (%)	33.3	23.4	21.2	35.2	24.9	
	PR>F	0.0138	0.0550	0.8600	0.0009	0.0250	
	SE	437.9	117.2	97.1	2230.3	750.8	
	LSD (0.05)	1491	618	NS	8617	3814	
ъr							

Notes:

Treatments 2 - 10 were seeded with Galega at 30 kg/ha

b Seeded June 14, 2018

Herbicide treatments were only applied in planting year (2018)

c Barley harvested July 9, 2018

Phosphorus and potassium levels were high in soil and were not applied in 2019

A second cut was not taken in 2020 due to poor growth

a Means with the same letter were not statistically different according to the Tukey-Kramer test (P=0.05)

d Letter codes not displayed for the means not affected by the treatment (P>0.05)

5.7 Galega Establishment - Planted in 2018 Cont'd from previous page Quality Parameters on Dry Matter Basis: First Cut

	CRUDE	SOLUBLE									
	PROTEIN	PROTEIN	ADF-CP	UIP	ADF	NDF	TDN	NEL	NEG	NEM	RFV
<u>TREATMENT</u>	<u>%</u>	<u>% of CP</u>	<u>%</u>	<u>% of CP</u>	<u>%</u>	<u>%</u>	<u>%</u>	<u></u>	Mcal/kg	<u></u>	
Alfalfa seeded at 15 kg/ha (check)	20.4	36.0	1.57	36.6	33.1	41.8	68.8	1.57	0.83	1.41	141
Galega seeded in spring as early as possible	20.4	35.7	3.32	36.7	37.6	50.4	67.1	1.52	0.73	1.30	110
Allow weeds to come out in spring kill the weeds and then seed galega	20.1	36.0	2.51	36.6	35.9	46.9	69.4	1.53	0.76	1.34	121
Galega seeded after barley harvested at boot stage	20.3	35.9	2.81	36.6	34.2	45.8	70.2	1.60	0.80	1.38	127
Galega seeded mid-July after killing the weeds	19.6	35.9	3.10	36.6	36.9	49.2	67.7	1.54	0.74	1.31	114
Galega seeded after pre-plant incorporation of Rival (trifluralin) @	19.4	36.0	2.77	36.6	35.5	45.1	69.8	1.59	0.78	1.36	126
Galega seeded after pre-plant incorporation of Sencor @ 475g/ha	17.3	36.1	2.20	36.5	37.2	47.2	67.9	1.54	0.74	1.31	118
Galega sprayed with Sencor @ 275 g/ha post-emergent	17.8	36.1	2.53	36.5	36.0	47.6	68.3	1.55	0.76	1.34	119
Galega sprayed with Basagram Forte @ 1.75L/ha post-emergent	20.2	35.8	2.78	36.7	35.4	46.9	69.2	1.58	0.78	1.36	122
Galega sprayed with Pursuit @ 210 ml/ha + Ag-Surf @ 0.25% v/v post- emergent	20.3	35.7	3.01	36.7	36.9	48.2	69.2	1.57	0.74	1.32	116
MEAN	19.6	35.9	2.66	36.6	35.9	46.9	68.8	1.56	0.77	1.34	121

UIP = Bypass Protein, ADF = Acid Detergent Fibre, NDF = Neutral Detergent Fibre, TDN = Total Digestible Nutrients,

NE = Net Energy, L = Lactation, M = Maintenance, G = Gain and RFV = Relative Feed Value.

5.7 Galega Establishment - Planted in 2018 Cont'd from previous page Quality Parameters on Dry Matter Basis: First Cut

<u>TREATMENT</u>	P <u>%</u>	K <u>%</u>	S <u>%</u>	Ca <u>%</u>	Mg <u>%</u>	Cl <u>%</u>	Cu <u>ug/g</u>	Zn <u>ug/g</u>	Fe <u>ug/g</u>	Mn <u>ug/g</u>	Na <u>%</u>
Alfalfa seeded at 15 kg/ha (check) Galega seeded in spring as early as possible	0.33 0.36	2.80 3.54	0.29 0.27	1.47 1.27	0.37 0.47	0.38 0.19	11.2 13.7	39.7 41.6	111 149	48.1 58.3	0.10 0.05
Allow weeds to come out in spring kill the weeds and then seed galega	0.38	3.01	0.31	1.01	0.51	0.27	16.4	31.6	129	52.8	0.05
Galega seeded after barley harvested at boot stage	0.36	3.29	0.28	1.09	0.45	0.26	12.8	34.2	101	46.8	0.03
Galega seeded mid-July after killing the weeds	0.34	3.39	0.28	1.00	0.43	0.24	14.1	36.0	113	56.7	0.02
Galega seeded after pre-plant incorporation of Rival (trifluralin) @	0.35	3.45	0.25	1.12	0.47	0.25	13.8	36.9	94	54.9	0.02
Galega seeded after pre-plant incorporation of Sencor @ 475g/ha	0.36	3.50	0.26	0.89	0.36	0.29	14.0	36.3	128	48.0	0.04
Galega sprayed with Sencor @ 275 g/ha post-emergent	0	0	0	0.00	0.00	0.27	0.00	0.0	0	0.0	0.00
Galega sprayed with Basagram Forte @ 1.75L/ha post-emergent	0.41	3.32	0.32	1.11	0.49	0.22	16.2	38.6	110	57.8	0.04
Galega sprayed with Pursuit @ 210 ml/ha + Ag-Surf @ 0.25% v/v post- emergent	0.40	3.72	0.28	1.07	0.43	0.21	16.0	45.6	122	65.6	0.04
MEAN	0.33	3.00	0.25	1.00	0.40	0.26	12.8	34.1	106	48.9	0.04

6 Abstracts of Reseach Papers

Environmentally Smart Nitrogen (ESN) – Potential for Improving Modern Crop Production and N-Use Efficiency

Tarlok Singh Sahota*

*Lakehead University Agricultural Research Station, 5790 Little Norway Road, Thunder Bay, Ontario, Canada P7B 5E1 (e-mail: tssahota@lakeheadu.ca)

ESN is polymer coated urea that could release N matching with crop requirements. I was the first to initiate research on ESN in field crops in Ontario, Canada in 2006; initially on timothy, spring wheat and winter wheat and later (till date) on bromegrass, grass mixtures (timothy, bromegrass, orchardgrass), other forages (barley, silage corn, oat, MasterGraze corn and sorghum sudangrass) feed barley and canola. In winter wheat, in 3 out of 6 years ESN gave ~0.6 MT/ha higher grain yield than urea. In spring wheat, in a relatively warmer year with well spread rainfall, ESN produced 1 MT/ha higher grain yield than urea; averaged over 3 years, 2/3rd N from urea and 1/3rd N from ESN could be recommended. Two third N from urea and 1/3rd N from ESN gave ~1 MT/ha extra seed yield than urea alone @ 180 kg N/ha in 2016 and 2017. Entire N from ESN in winter/spring wheat could be applied in seed rows at seeding without any detrimental effect. Highest barley grain and forage yields were recorded by urea @ 50 kg N/ha + ESN @ 20 kg N/ha; that recorded 1.2 MT/ha more forage yield than urea. Partial substitution of N from urea with ESN improved forage dry matter yield of timothy and MasterGraze corn (100 kg N/ha from urea + ESN (3:1 N) equaled that with urea @ 150 kg N/ha in yield, % protein and RFV!), but not that of winter cereals for forage, silage corn and sorghum sudangrass. At equal rates of N, single/fall application of ESN in timothy and bromegrass gave equal yield to urea applied in two splits in spring/summer. Spring wheat grain yields were the same with fall/or spring application of ESN. ESN/or urea + ESN (3:1 N) increased the grain/forage protein content in almost all crops by 1-2 % points at an extra cost of only \$ 6.0-10.5/ha. The results indicate that ESN could improve both crop yields and quality, make better use of N/and increase N-use efficiency. The presentation summarizes results from over 10 years and the results could be applicable globally under situations of high N losses from readily available N sources such as urea!

Paper presented at the International Horticulture Conference February 26-28, 2020, Punjab University Lahore, Pakistan.

Research on New Crops*

Dr. Tarlok Singh Sahota CCA Director LUARS Thunder Bay, Canada tssahota@lakeheadu.ca

Research on new crops is important for adaption of a crop to new areas and for the much needed crop diversification. Over twenty new crops (grain, forage, oilseed and specialty crops) were evaluated for their production potential at the Lakehead University Agricultural Research Station, Thunder Bay, Ontario, Canada during the past 15 years. These included Camelina, Canola, Sainfoin, Kernza, Galega, MasterGraze Corn, Sorghum Sudangrass, Perennial Rye, Frosty Berseem, Tonic Plantain, Choice Chicory, Fixation Blansa, Quinoa, Hemp, Switchgrass, Winter Barley, Winter Triticale, Winter Rye, Winter Wheat, Durum Wheat and Spring Triticale. Crops that showed good production potential were; Kernza for forage (4.40 MT DMY/ha) and straw (14-15 MT/ha) production, Galega for higher and better quality forage production (5.52 MT DMY/ha ~1 MT/ha higher than that from alfalfa), MasterGraze corn for forage production (8.40 MT DMY/ha in ~80 days; better production than barley), Sorghum Sudangrass for forage production (8.80 MT DMY/ha in ~80 days), Perennial Rye for straw/biomass production (24 MT straw/ha), Frosty berseem for forage production (3.85 MT DMY/ha) and for building soil N fertility, Switchgrass for biomass production on marginal lands (6.30 DMY/ha), winter cereals (Triticale, Rye and Wheat) for forage (10-12 MT DMY/ha), grain (up to 8 MT/ha) and straw (8-10 MT/ha) production, and Durum Wheat that produced as good grain yield (over 6 MT/ha) as the conventional wheat and gave higher straw yield (over 8 MT/ha) than the conventional wheat. Crops that were grown locally are Winter Wheat/and Rye, Durum Wheat, Sorghum Sudangrass, MasterGraze Corn and Canola. Galega had a Province wide trial cultivation and also in a few Provinces outside Ontario. MasterGraze Corn found its place in the outskirts of Calgary, Alberta. Addition of new crops help to diversify cropping systems on farms, help meeting the challenge of climate change, protect and build soils and improve farm income.

*Paper presented at the International Conference "Smart Plantation an Ultimate Solution to Climate Change (ICSP 2020)" March 2-4, 2020; organized by the Department of Botany, LCWU Lahore, Pakistan

Effect of time of seeding and stage of harvesting on MasterGarze corn in Northwestern Ontario

T. S. Sahota¹

¹Lakehead University Agricultural Research Station (LUARS), Thunder Bay, ON, Canada (<u>tssahota@lakeheadu.ca</u>)

Abstract

MasterGraze corn could produce 8 Mg ha⁻¹ dry matter yield (DMY) in 80 days and has been reported to increase milk and butter fat yield in dairy cows. However, its optimum time of seeding and stage of harvesting was not known in the Northwestern Ontario. Therefore an experiment was conducted at LUARS Thunder Bay during 2016 and 2017 in RCBD replicated four times. Treatments included all combinations of four seeding dates (May 15, May 25, June 5 and June 15) and three stages of harvesting (initiation of tasseling, 50 % tasseling and 100 % tasseling). The crop was raised with optimum production practices. DMY was recorded and feed samples for taken for feed quality analyses. The data from the two years were subjected to pooled analysis of variance. The results revealed that the highest DMY (9.13 Mg ha⁻¹) was obtained with June 5 seeding, which was 1.95 Mg ha⁻¹ higher than May 15 seeding and 1.57 Mg ha⁻¹ higher than May 25 seeding. June 15 seeding gave the lowest DMY (5.39 Mg ha⁻¹). DMY yield increased linearly with delay in harvesting from initiation of tasseling (5.55 Mg ha⁻¹) to 50 % tasseling (7.35 Mg ha⁻¹) ¹) and to 100 % tasseling (9.03 Mg ha⁻¹). Protein content was maximum (14.9 %) with June 15 seeding that was 13 % with June 5 seeding. Other feed components (ADF, NDF and TDN) didn't seem to vary with the seeding dates. Stage of harvesting didn't have much effect on protein content (13.4 % at full tasseling and 13.9 % at initiation of tasseling). RFV was highest (113) with seeding on May 15 and harvesting at initiation of tasseling. It may be concluded that June 5 was the optimum time of seeding MasterGraze corn and 100 % tasseling the optimum stage for its harvesting in Northwestern Ontario!

Paper prepared for presentation at the International Conference on Crop Sciences, University of Saskatchewan, SK, June 2020 that was cancelled due to COVID-19!

Evaluation of spring wheat varieties for their production potential and diseases incidence in Northwestern Ontario

T. S. Sahota¹

¹Lakehead University Agricultural Research Station (LUARS), Thunder Bay, ON, Canada (<u>tssahota@lakeheadu.ca</u>)

Abstract

Crop production is determined primarily by three factors; weather, genetics and management. There is nothing much we can do about the weather, but we can choose good genetics. However, what is good for one area may not be good for another. Therefore 29 varieties (21 aestivum and 8 durum) from all over Canada were evaluated for their production potential and diseases incidence at LUARS Thunder Bay during 2016 to 2018 in a RCBD replicated four times. All varieties were seeded at the same time in May and harvested in September every year and received uniform package of practices. The data were subjected to pooled analysis of variance. The results indicated that the grain yield ranged from 4.86 Mg ha⁻¹ (AAC Raymore - durum) to 8.69 Mg ha⁻¹ (Easton -HRW), and the straw yield ranged from 5.93 Mg ha⁻¹ (AAC Penhold - CPSR) to 9.70 Mg ha⁻¹ (Easton). The next best grain vielding varieties were AAC Chiffon-SW (7.55 Mg ha⁻¹) and SY Rowyn - CPSR (7.33 Mg ha⁻¹). The second and third best straw yielding varieties were Easton -HRW (9.70 Mg ha⁻¹) and Furano - HRW (8.69 Mg ha⁻¹). Durum varieties produced lower grain yields (4.86 Mg ha⁻¹ in AAC Raymore to 6.36 Mg ha⁻¹ in CDC Alloy) than aestivum varieties (4.99-8.69 Mg ha⁻¹). The straw yields from durum varieties (7.24-8.35 Mg ha⁻¹) were not too bad as compared to aestivum varieties (5.93-9.70 Mg ha⁻¹). Grain protein content was higher in Easton (13.8 %) than in AAC Chiffon (12.3 %). All varieties matured between 113 to 119 days. None of the varieties had Septoria or Rust infection, and the infection from other diseases (BYDV, Spot Blotch and FHB) was negligible. Aestivum varieties gave higher grain yield than the durum varieties and the top three grain yielding varieties were Easton, AAC Chiffon and SY Rowyn.

Evaluation of spring barley varieties for their production potential and diseases incidence in Northwestern Ontario

T. S. Sahota¹

¹Lakehead University Agricultural Research Station (LUARS), Thunder Bay, ON, Canada (<u>tssahota@lakeheadu.ca</u>)

Abstract

Crop production is determined primarily by three factors; weather, genetics and management. There is nothing much we can do about the weather, but we can choose good genetics. However, what is good for one area may not be good for another. Therefore 16 varieties (5 two row and 11 6 row) from all over Canada were evaluated for their production potential and diseases incidence at LUARS Thunder Bay during 2016 to 2018 in a RCBD replicated four times. All varieties were seeded at the same time in May and harvested in September every year and received uniform package of practices. The data were subjected to pooled analysis of variance. The results indicated that the grain yield in two row barley ranged from 4.70 Mg ha⁻¹ (CDC Coalition) to 5.79 Mg ha⁻¹) (CDC Austenson) and that from 6 row barley ranged from 5.24 Mg ha⁻¹ (AAC Mirabel) to 6.95 Mg ha⁻¹ (Chambly). Boroe (6.78 Mg ha⁻¹) was as good as Chambly in grain yield. The next best varieties in grain yield were, Oceanic (6.42 Mg ha⁻¹) and Synasolis (6.09 Mg ha⁻¹)/ Rhea (6.08 Mg ha⁻¹). Straw yields were highest in Encore (6.38 Mg ha⁻¹), Chambly (6.21 Mg ha⁻¹) and Rhea (6.13 Mg ha⁻¹). None of the varieties were infested with Septoria, BYDV incidence on the scale of 0-9 was low (1.6 in Canmore to 3.7 in Oceanic) and Spot Blotch (0.6-1.3) and FHB infestation (0-0.3) was negligible. Six row varieties gave higher grain and straw yield than the two row varieties. Considering both grain and straw yield, Chambly was the best variety followed closely by Boroe!

Evaluation of malting barley varieties for their production potential and diseases incidence in Northwestern Ontario

T. S. Sahota¹

¹Lakehead University Agricultural Research Station (LUARS), Thunder Bay, ON, Canada (<u>tssahota@lakeheadu.ca</u>)

Abstract

Crop production is determined primarily by three factors; weather, genetics and management. There is nothing much we can do about the weather, but we can choose good genetics. However, what is good for one area may not be good for another. Therefore 10 varieties from all over Canada were evaluated for their production potential and diseases incidence at LUARS Thunder Bay during 2016 to 2018 in a RCBD replicated four times. All varieties were seeded at the same time in May and harvested in September every year and received uniform package of practices. The data were subjected to pooled analysis of variance. The results indicated that the grain yield was highest with CDC Bow (6.49 Mg ha⁻¹) followed closely by CDC Kindersley (6.06 Mg ha⁻¹). CDC Copeland (5.75 Mg ha⁻¹) was the next best variety. Straw yield was highest in CDC Bow (9.15 Mg ha⁻¹) followed to be the best! Crop maturity ranged from 102-107 days. Septoria and Rust were absent. BYDV infection was low (1.8 AC Newdale) to medium (4.6 CDC Kindersley) on the scale of 0-9. Spot Blotch infestation was negligible (0.1-0.8). CDC Bow that had the highest grain and straw yields could be recommended for cultivation on farms!

Evaluation of oat varieties for their production potential and diseases incidence in Northwestern Ontario

T. S. Sahota¹

¹Lakehead University Agricultural Research Station (LUARS), Thunder Bay, ON, Canada (<u>tssahota@lakeheadu.ca</u>)

Abstract

Crop production is determined primarily by three factors; weather, genetics and management. There is nothing much we can do about the weather, but we can choose good genetics. However, what is good for one area may not be good for another. Therefore 23 varieties from all over Canada were evaluated for their production potential and diseases incidence at LUARS Thunder Bay during 2016 to 2018 in a RCBD replicated four times. All varieties were seeded at the same time in May and harvested in September every year and received uniform package of practices. The data were subjected to pooled analysis of variance. The results indicated that the grain yield was highest with OA 1357-2 (7.21 Mg ha⁻¹) followed closely by AAC Roskens (7.09 Mg ha⁻¹), AAC Bullet (7.06 Mg ha⁻¹), OA 1395-1 (6.92 Mg ha⁻¹) and AAC Noranda (6.87 Mg ha⁻¹). Straw yield was highest with OA 1357-2 (8.30 Mg ha⁻¹), and OAC Nicolas (8.26 Mg ha⁻¹). Most varieties matured in 92 days. All varieties were free from Septoria or Spot Blotch incidence. BYDV infestation was low (1.6-2.6 on the scale of 0-9) and Rust incidence was negligible (0.1-0.7). Considering the grain yield, AAC Roskens, AAC Bullet and AAC Noranda could be recommended for cultivation on farms.

7. Extension and Outreach

7. Extension and Outreach

Lakehead University Agricultural Research Station (LUARS), Thunder Bay, apart from conducting on-station research was also actively involved in the following important Extension and Outreach activities, largely through its Director Dr. Tarlok Singh Sahota CCA:

7.1 Invitations/Honours:

- Dr. Sahota was invited as a Key Note Speaker at two International Conferences; (i) International Horticulture Conference, Punjab University Lahore, Pakistan, February 26-28, 2020, and (ii) International Conference on Smart Plantation an ultimate solution to Climate Change, Women College University, Lahore, Pakistan, March 2-4, 2020.
- Dr. Sahota was also invited to deliver International Seminars at the Departments of Botany in the University of Education, Lahore, Pakistan and GC University Lahore, Pakistan in the first week of March 2020.
- Dr. Sahota was invited for participation in presentations on "Balanced Fertilizer Application in Wheat" organized by Pakistan Agricultural Scientists Form (PAS) in collaboration with Pakistan Academy of Science, on zoom on September 12, 2020.
- Dr. Sahota was appointed Editor of the Journal Plantarum, Women College University Lahore, Pakistan.

7.2 Farm Advisory Services:

7.2.1 Contributions to the Northwest Link/TBFA Website and Ontario Farmer:

Dr. Tarlok Singh Sahota contributed the following articles to the Northwest Link-a newsletter of the TBSCIA Thunder Bay, and Ontario Farmer for the benefit of the farming community in Ontario in general and Northwestern Ontario in particular. The articles help farmers to get much needed advice on important aspects of crop production and nutrient management at pertinent times and make informed decisions.

Northwest Link/TBFA Website:

- 1. Sahota, Tarlok S. 2020. LUARS has some extremely good alfalfa varieties. <u>http://tbfarminfo.org/luars-has-some-extremely-good-alfalfa-varieties/</u>. June 27, 2020.
- 2. Sahota, Tarlok S. 2020. Post Seeding Tasks: June 4, 2020; https://tbfarminfo.org/postseeding-tasks-dr-tarlok-singh-sahota-cca/ Was also published by CCA Ontario at: http://ccaontario.com/uploads/pdfs/PostSeedingTasks.pdf
- 3. Sahota, Tarlok S. 2020. Last Minute Tips: May 15, 2020; https://tbfarminfo.org/lastminute-tips-dr-tarlok-singh-sahota-cca/
- 4. Sahota, Tarlok S. 2020. Tips to get Maximum Economic Yields. April 6, 2020. http://tbfarminfo.org/tips-to-get-maximum-economic-yields-dr-tarlok-singh-sahota-cca/ (See also at <u>http://ccaontario.com/uploads/pdfs/TipstogetMaximumEconomicYields.pdf</u>).
- 5. Sahota, Tarlok S. 2020. It pays to use multiple sources of Nitrogen for crop production! March 26, 2020. https://tbfarminfo.org/it-pays-to-use-multiple-sources-of-nitrogen-forcrop-production/
- 6. Sahota, Tarlok S. 2020. LUARS 2020 Research Results from Forage Experiments. Northwest Link March 2020, Pages 2-4.
- Sahota, Tarlok S. 2020. LUARS Research 2019 Results from the Fertilizer Experiments. February 20, 2020; https://tbfarminfo.org/luars-research-2019-results-from-the-fertilizer-experiments/

8. Sahota, Tarlok S. 2020. LUARS Research 2019 – High yielding crop varieties. January 19, 2020; https://tbfarminfo.org/luars-research-2019-high-yielding-crop-varieties/

Ontario Farmer/Others:

Apart from direct publications by Dr. Sahota in Ontario Farmer (through CCA Ontario Board), he was quoted in/or interviewed by Ontario Farmer, Thunder Bay Television and Chronicle Journal for the following articles/reports:

- 1. Sahota, Tarlok S. 2020. It pays to use multiple sources of nitrogen for crop production. Ontario Farmer, February 11, 2020, Page 17B*.
- 2. Sahota, Tarlok Singh. 2020. Tips to get Maximum Economic Yields. http://ccaontario.com/ontario-farmer-articles- (April 2020).
- 3. Peter Reschke. 2020. Crop production for max return. Ontario Farmer, April 21, 2020, Page B10.
- 4. Peter Reschke. 2020. Diamondback moth feeding damage in canola. Ontario Farmer, July 7, 2020, Page B3.
- 5. Peter Reschke. 2020. New alfalfa varieties put to test at Lakehead. Ontario Farmer, July 14, 2020, Page B3.
- Jackie Clark. 2020. Lakehead welcomes farmers to research station. The Agricultural Research Station brings together researchers, students and farmers to optimize crop production in Thunder Bay. <u>https://www.farms.com/ag-industry-news/lakehead-welcomesfarmers-to-research-station-507.aspx</u> (July 234, 2020).
- Jodi Lundmark. 2020. Research station keeps tour going. Chronicle Journal Thunder Bay, July 28, 2020, Pages A1 and A3. See also at: <u>https://www.chroniclejournal.com/news/local/station-always-tries-something-new/article_2d7f99fc-d078-11ea-b389-a3d5fd275365.html</u>
- 8. Peter Reschke. 2020. There are lots of reports of multi-cob corn plants this year. But have you ever seen with five? Ontario Farmer, August 4, 2020, Page B2.
- 9. Ontario Farmer. 2020. Northern wheat success. Ontario Farmer, August 25, 2020, Page A5.
- 10. Peter Reschke. 2020. Natural Control (of Grasshopper). Ontario Farmer, August 25, 2020, Page B3.
- 11. Peter Reschke. 2020. Thunder Bay-area spring wheat yields 2.4 tonnes per acre. Ontario Farmer, September 8, 2020, Page B5.

*Articles published through CCA Ontario Board!

7.2.2 Papers Presented at Scientific and Farmers' Conferences: Dr. Tarlok Singh Sahota made the following presentations in the local, regional, national and International conferences and meetings:

- 1. Sahota, Tarlok S. 2020. LUARS Research 2019 Highlights presentation made to the TBARA member farmers at Rosslyn Hall on February 20, 2020.
- Sahota, Tarlok S. 2020. Environmentally Smart Nitrogen (ESN) Potential for Improving Modern Crop Production and N-Use Efficiency. Paper presented at the International Horticulture Conference, Punjab University Lahore, Pakistan, February 26-28, 2020*.
- Sahota, Tarlok S. 2020. Research on New Crops. Paper presented at the International Conference on Smart Plantation an ultimate solution to Climate Change, Women College University, Lahore, Pakistan, March 2-4, 2020*.

4. Amanda Diochon, Paul Hazlett, Steve Kinrade, Nancy Luckai, Dave Morris, Tarlok Singh Sahota, Lisa Venier, Martin Kwiaton, Alissa Ramsay, Robin Sevean, Magali Furlan Nehemy, Evalisa McIllfaterick, James Salter, Erin Wepruk. 2020. Amending soils with wood ash: Effects on soils and vegetation in long term trials. Presentation made to the Faculty of Natural Resources Management, Lakehead University, Thunder Bay, March 4, 2020.

*Invited Paper; See also Section 7.1!

7.2.3: Other Important Conferences/Meetings/Programs attended by Dr. Tarlok S Sahota:

- Participated in CCA Annual Conference, January 15-16, 2020 at London, ON*.
- Participated in over 55 webinars*; (i) ASA Webinar Taking a 4R Approach when Apply-• ing Iron to Crops on January 23, 2020, (ii) Top Crop Manager webinar, Fungicide resistance management: Best practices in pome fruit, on February 6, 2020, (iii) ASA Webinar 'Policy and Science - Our Current Nitrogen Landscape' on February 12, 2020, (iv) ASA Webinar Seeking Net Neutral: Energy Efficiency in the U.S. Rice Industry on February 18, 2020, (v) Top Crop Manager webinar Optimizing Spring Nitrogen Application on February 20, 2020, (vi) Top Crop Manager webinar Pre-seed tank mixing for yield & weed resistance management on March 11, 2020, (vii) ASA Webinar Phosphorus and Agriculture: Optimizing Production and Minimizing Environmental Issues on March 19, 2020, (viii) ASA Webinar Lessons Learned from Technology Adoption: Moving into the Digital Age of Farming on March 24, 2020, (ix) Top Crop Manager webinar Managing waterhemp, Canada fleabane and kochia in corn and soybeans on March 25, 2020, (x) ASA Webinar Strip Tillage: Research Lessons on How to Make a Good System Even Better on April 8, 2020, (xi) Top Crop Manager webinar What to consider when looking at cover crops? on April 8, 2020, (xii) ASA Webinar U.S. Rice: Sustaining Communities and Looking to the Future on April 9, 2020, (xiii) Timac Agro Canada Webinar Phosphorus and Top-Phos on April 9, 2020, (xiv) Timac Agro Canada webinar on Biostimulants on April 23, 2020, (xvi) Scouting potato diseases by Eugene Banks on May 21, 2020, (xvii) Scouting potato insects by Eugene Banks, (xviii) Physiological Disorders and Injuries in potato by Eugene Banks on May 28, 2020, (xix) Research Round Table Webinar organized by Dr. Andrew Dean on May 29, 2020, (xxx) Developing insights of Variable Rate Nitrogen by Aaron Breimer on June 4, 2020, (xxxi) Tissue Testing Made Easy by the Canadian Fertilizer Institute (CFI) on June 18, 2020, (xxxii) Ontario Hoppenings Lunch and Learn, a webinar on hops on June 29, 2020, (xxxiii) New Frontiers in Research Fund (NFRF) Exploration NOI, July 7, 2020, (xxxiv) Is fungicide a smart investment or a foolish money pit? On July 9, 2020, (xxxv) Cover Crops on July 13, 2020, (xxxvi) Measures of Soil Water Cycling on July 21, 2020, (xxxvii) Using Data to Identify Where to Take Tissue Samples for Micronutrient Crop Needs on August 5, 2020, (xxxviii) ASA Webinar The Future of Foliar Disease Identification, Quantification, and Impact Determination on August 11, 2020, (xxxix) SSSA Webinar "Measures of Soil Carbon Cycling and Storage" on August 13, 2020, (xxxx) 4Rs and Conservation Practices -Opening Carbon Credit Markets, (xxxxi) Is there enough time to use the data collected in 2020 for variable rate applications in 2020?, August 26, 2020, (xxxxii) How can placement of nitrogen fertilizer impact productivity, profitability, and sustainability? on August 28, 2020, (xxxxiii) Deveron Webinar "Powerful Wheat Insights from 2020" on September 10, 2020, (xxxxiv and xxxxv) Capturing the variability of your field fertility and "Measures

of Soil Nitrogen Cycling"; both on September 17, 2020, (xxxvi) Optimum Strip-till Placement: Soil, Nutrient, and Crop Considerations on September 22, 2020, (xxxvii) Find out how to make the most of your manure, on September 23, 2020, (xxxviii) How can placement of nitrogen fertilizer impact productivity, profitability, and sustainability?, (xxxxix) Evaluating 2020 in-field testing data on October 2, 2020, (xxxx) Fertilizer and the Farm on October 13, 2020, (xxxxi) CityAge webinar Connected Farms on October 15, 2020, (xxxxii) Liquid manure distribution and application uniformity: Getting the most from your manure on October 21, 2020, (xxxxiii) Practical Measures of the Soil Microbiome: How do Crop Advisors Use the Data?" on November 17. 2021, (xxxxiv) The Forgotten R in 4R Nutrient Management on November 19, 2020, (xxxxv) Standard Measurements for Soil Health on December 8, 2020, and (xxxxvi) Active Carbon and Soil Protein: New Frontiers for Monitoring Soil Health and Quality on December 17, 2020.

Participated in several meetings:

- Met Brian McLaren and Jannat Chauhan (Master's student Faculty of NRM) on January 10, 2020 to discuss about Chauhan's Master's research.
- Had a meeting with two Master's students Keshav Menon and Anmol Rana along with Brian McLaren and Don Henne on January 13, 2020 to discuss about students' Master's research.
- Met Gert Brekveld to provide farm advisory services to him on January 27, 2020.
- Met Jannat Chauhan Master's student on February 5, 2020 for discussion on her proposed Master's research.
- Attended a presentation, An Embarrassment of Riches: We now have better topography for the ice on Earth than the land, by Paul Morin, Director, Polar Geospatial Center, University of Minnesota, St. Paul on February 10, 2020.
- Met Karen Davies, Secretary TBARA on February 13, 2020 to discuss relationship between LUARS and TBARA and TBARA's expectations from LUARS.
- Met Fred Breukelman to provide farm advisory services to him on March 13, 2020.
- Met Thunder Bay Co-op staff (Darren Fisk, Christina Mol and Jason Buitenhuis) to know about the ongoing seeds/and fertilizer sales.
- Participated in several Teleconferences with Adrian Unc and Team for the NFRF Project - Northern food-security through integrated boreal and arctic agricultural research during May to July 2020.
- Participated in OMAFRA's Northern Ontario Agribusiness Breakfast Meetings (over zoom) by Christine O'Reilly on May 20, June 3 and June 17, 2020.
- Zoom meeting with Muditha Heenkenda, Department of Geography, Lakehead University on Remote Sensing on May 28, 2020.
- CCA Research and Innovation Committee Teleconference on June 5, 2020.
- I was interviewed by Kristy Tasala TBDHU on climate change (June 16, 2020).
- Participated in virtual CSA Annual General Meeting via zoom on June 22, 2020.
- I was interviewed by the media on LUARS Summer Tour in small groups; July 21 by Thunder Bay TV, Farms.Com on July 24 and Chronicle Journal on July 27, 2020.
- Participated in Thesis Defence of Amber Fredenburg on zoom on September 10, 2020; Fredenburg worked on "Diversity, phernology, and host association of wild bees (Hymenoptra:Anthophilla in Thunder Bay, Ontario)" at LUARS for her Master's Degree.

- Invited for and participated in presentations on "Balanced Fertilizer Application in Wheat" organized by Pakistan Agricultural Scientists Form (PAS) in collaboration with Pakistan Academy of Science, on zoom on September 12, 2020.
- Participated in CCA Research and Innovation Committee Meeting on September 28, 2020.
- Underwent Zoom Training with TSC Multimedia on September 30, 2020.
- Participated in EDI workshop on October 7, 2020.
- Participated in Annual General Meeting of the TBSCIA on December 8, 2020 via Zoom.

*Participation in these programs, meetings or events were meant for Networking and Professional Development!

In addition, Dr. Sahota participated in numerous formal and informal meetings at Thunder Bay with member farmers and colleagues/researchers from other organizations.

7.2.4 Field Tours/Visits:

LUARS Annual Summer Tour: Annual Summer Tour at the Lakehead University Agricultural Research Station (LUARS), Thunder Bay, ON, has been an important yearly event as a means to demonstrate and disseminate innovative crop production and soil and nutrient management technologies to the area producers and participants from other organizations from within and outside Thunder Bay. Due to COVID-19, the tour this year was held in small groups from July 21 to August 6, 2020, was well appreciated despite thin attendance and was very well covered by the Media;

Thunder Bay Television, July 21:

https://www.youtube.com/watch?time_continue=833&v=41aUgYjL0W0&feature=emb_title.

Farms.Com (Jackie Clark), July 23: <u>https://www.farms.com/ag-industry-news/lakehead-welcomes-farmers-to-research-station-507.aspx</u>.

Chronicle Journal (Jodi Lundmark), July 27:

https://www.chroniclejournal.com/news/local/station-always-tries-something-new/article_2d7f99fc-d078-11ea-b389-a3d5fd275365.html.

Dr. Sahota, Director LUARS led the tours and showed the participants diverse research plots, including various trials on about two dozen crops such as canola (Clearfield, Liberty, Roundup and Truflex), alfalfa, sainfoin, trefoil, red clover, winter rye, peas, various varieties of wheat (winter and spring), feed and malting barley and oats, edible beans, soybean, flax, galega, Kernza, and lentils, plus many more crop varieties and different fertilizers (ammonium sulphate, urea, ESN, NK21, urea SuperU, and two new fertilizers - Top Phos and Apex) and new Biostimulants (FA starter, IRYS, FL Gold and Genea) experiments. The large acreage and beautiful sunny location proved, as always, an exceptional area to view the crops at and spend the mornings learning more about the field trials that our local research station has been working hard on in the past few months, especially when it is so relevant to our area growers. Following is a list of the participants; listed alphabetically by the first name:

- Allan Mol, Dairy Farmer and Past President OSCIA and TBARA
- Dr. Andrew Dean*
- Anmol Rana*

- Bill Meyers, Dairy Farmer
- Dr. Don Henne*
- Dr. Gautam Das*
- Howard Hancock, Farmer
- Karen Davies, Secretary TBARA
- Kelly Fettes*
- Martin Schep, Dairy Farmer
- Melissa Burton*
- Muditha Heenkenda*
- Peggy Brekveld, Dairy Farmer and Vice President OFA
- Taylor Gynane*
- Tom Loghrin, a Retired Farmer
- Trevor Pennings (a farmer from near London, Ontario)
- William (Bill) Maloney*

*Officials, Researchers or Staff from the Lakehead University, Thunder Bay.

The participants were amazed at the quantum and quality of work done at LUARS with only a few staff. The visitors were treated to some refreshments by LUARS.

Mid/Late Summer Tours: Dr. Sahota gave tour of LUARS research plots and to DeBruin Greenhouse to a group of First Nations from Mobert (400 km away from Thunder Bay) lead by Victoria (Vicky) Desmoulin on August 14, 2020:

- Victoria (Vicky) Desmoulin
- Randal Desmoulin
- Hannah Desmoulin
- Judie Desmoulin
- Chris Banish, and
- Eli Bananish

Fall Tours: Dr. Sahota gave tour of LUARS research plots in fall 2020 to:

- Dillon Brian Muldoon and his father Joe Dillon Muldoon who came from Lakefield, Ontario on September 22, 2020. Muldoons were impressed by the breadth and depth of ongoing research at LUARS!
- Thora Cartlidge Regional Manager Bioenterprise Corporation on October 2, 2020. Thora Cartlidge commented as follows after the tour: "Tarlok, thank you so much for the informative walking tour of the LUARS field plots last week. I learned much about the growing potential of new and familiar crops for this region. Experiencing the Research Station through your eyes was akin to visiting a city of diverse neighbourhoods, block by block, each with its own characteristics!"
- Riley Verhelst, the new Director Terminal Operations Richardson International Limited Thunder Bay on October 20, 2020. Verhelst has replaced Gerry Heinrichs with whom LUARS has very good professional relations. Verhelst assured of continued support to LUARS.

Farm Calls and Visits: Dr. Tarlok Singh Sahota, as a part of the 'Farm Advisory Services' of the LUARS, attended to farmers' phone calls, called most of them (on phone) and made frequent visits to their fields, held one to one meetings with the area growers and helped them in selection

of high yielding crop varieties and planning for efficient crop, soil and nutrient management practices. In addition, Dr. Sahota wrote dozens of emails to the member farmers and compiled and shared Tech Info from LUARS with them on biweekly basis to keep them informed on the latest production technology, challenges, opportunities and developments in farming. Dr. Sahota also attended to queries from other parts of the Province/and from other Provinces most of which were on Galega, a new perennial forage legume from Scandinavian countries, researched and introduced for cultivation on farms by TBARS/LUARS.

7.2.5 Impact on farms:

LUARS, through its research, extension and outreach activities, have made a significant impact for the betterment of the agricultural industry particularly through 'Crop Diversification' and adoption of 'Beneficial Nutrient Management Practices'. Area farmers continued to diversify their cropping systems, adding new crops, clearing land and tile drainage. The impact of our Extension and Outreach activities could be seen in the form of favourable changes as follows:

- Thunder Bay Co-op brought in 88 MT of CDC Bow barley, some Maverick, a Truck load of Brandon, lots of different corn, 7 MT of Akras soybean, L252, L233P (most popular) and L255PC canola, a bit of alfalfa from General Seeds, a few 4010 peas and barley mix.
- Fritz Jaspers: Seeded 190 acres Brandon wheat (tested at LUARS), 100 acres corn under biodegradable plastic mulch, 210 acres canola (160 acres Liberty 233P and 50 acres Liberty 255PC), 90 acres Synasolis barley under seeded with alfalfa and timothy, and 40 acres soybeans (Akras and Elite). Fritz Jaspers created a new record by getting 2.4 MT grains and 90 small straw bales/acre from his 90 acre Brandon wheat field grown after canola. Wheat at LUARS was found to give higher yield after canola than after other crops! He had a record 1.7 MT/acre seed yield from a 53 acres canola field. His overall canola seed yield averaged at ~1.6 MT/acre. His silage corn (20 MT/acre) and soybean grain (1.23 MT/acre) yields too were good!
- Fred Breukelman seeded 170 acres canola and obtained 1.5 MT seed yield/acre. Fred Breukelman also grew Sorghum Sudangrass, tested at and recommended by LUARS in 40 acres.
- Ed Breukelman: Seeded 150 acres CDC Bow barley (out of which 50 acres under seeded with alfalfa and 40 acres after winter rye that had significant winter kill), 90 acres corn under biodegradable plastic mulch, and 50 acres of Liberty 233P canola. Ed Breukelman got ~2 MT/acre average grain yield from barley and 1.5 MT/acre from canola. Almost all area growers got at least 1.5 MT/acre seed yield from canola this year.
- Bernie Kamphof: Planted 205 acres of corn, 165 acres of Austenson barley and 60 acres of alfalfa all for forage/feed.
- Evan Grootenboer: Applied wood ash in 121 acres, seeded Tabasco Fababeans in 16 acres.
- Mark Veurink: seeded 25 acres winter wheat, 150 acres corn, 100 acres AAC Penhold spring wheat, 95 acres canola and 140 acres barley 2 row. Mark Veurink created a new record by getting a very high grain (2.8 MT/acre) and straw (6 large scale bales/acre) yield from winter wheat. His barley and wheat grain yields were ~2 MT/acre and he got 1.5 MT/ha seed yield from canola.
- Gerrit Cramer seeded Bono hybrid winter rye (tested at LUARS) first time in 90 acres. He has applied ESN to winter rye in the seed row. He also seeded 300 acres under cover crop (a mixture of turnip, barley and peas) for the first time.

- Allan and Henry Mol seeded canola for the first time this year in 64 acres and recorded 90 MT seed production, which equaled ~1.5 MT/acre seed yield. Mols also seeded winter wheat (variety AAC Gateway recommended by LUARS) in 42 acres for the first time this year.
- Henry and Peter Aalbers seeded winter rye in 25 acres for the first time.
- Land clearing and tile drainage on farms continued!
- Farmers continued to use multiple sources of N (urea, ESN and ammonium sulphate) for crop production. Farmers have also started applying ESN in the seed row; a practice recommended by LUARS. One producer applied ESN in seed row in over 400 acres for spring wheat, canola, barley, and corn production! Research at LUARS has proved that use of multiple sources of N instead of a single source was conducive to high yields.
- Inspired by research at TBARS/LUARS dairy farmers around Calgary continued to expand their acreage under MasterGraze corn. TBARS pioneered in research on Master-Graze corn that produces 8 MT dry matter yield/ha in 80 days. Its feeding to dairy cows improved milk yield by 31/cow/day and butter fat yield from 3.93 % to 4.40 %.
- Richardson International Limited procured 12,926 tonnes grains/seeds from local producers as at November 25, 2019 at a value of ~3.8 million dollars from Thunder Bay and Rainy River Districts. This is 4,126 tonnes more than that in 2019 and over 7,100 tonnes more than that in 2018. I believe at least one more Grain Elevator procured grains from the area as well (volumes not known). This is in addition to some malting barley procured by the Canada Malting Company from our area.

Thunder Bay remains the only place in Ontario, where Millhouse (hulless food) barley is grown!

Thunder Bay producers are continuing to renovate, expand/or make additions to their fields and dairy operations! At least one dairy farmer installed a super modern Robot Milk Barn!

7.4 Visitors to LUARS/Dr. Sahota's office:

Because of COVID-19 there were hardly any visitors to LUARS this year. We had only the following two visitors:

- Andrew Brekveld Dairy Farmer, and
- Harjit Dillon Past Technician TBARS

7.5 Networking:

Dr. Tarlok Singh Sahota, Director LUARS, continued to further expand and strengthen LU-ARS's network and shared an excellent rapport with the researchers/research organizations, ministry officials/specialists, funding agencies, private companies, etc. not only in the province of Ontario, but also in the other provinces of Canada and the USA. Part of this is done by participating in the conferences/meetings (this year mostly by Zoom) within the Province/country and out of country. One of the new contacts includes Adrian Unc, Memorial University of Newfoundland. LUARS is a part of the LOI (Integrated research to accelerate development of adapted Northern cropping systems) submitted by Adrian Unc for funding from "New Frontiers in Research Fund" in collaboration with 15 others from all over Canada and one from Finland (Maren Oelbermann, University of Waterloo, Kyle Bobiwash, University of Manitoba. Douglas Cattani, University of Manitoba, Joann Whalen, McGill University, Sina Adl, University of Saskatchewan, Atanu Sarkar, Memorial University of Newfoundland, Matthew Bakker, University of Manitoba, Sylvie Quideau, University of Alberta, Cynthia Kallenbach, McGill University, Pedro Madeira Antunes, Algoma University, Joshua Nasielski, University of Guelph David Thompson, Sault Ste. Marie Innovation Centre, Ashlee Cunsolo, Memorial University of Newfoundland, Rachel Pugh, Yukon University, Nils Borchard, Natural Resources Institute Finland).

LUARS successfully completed a three year project on malting barley in collaboration with NOFIA and RAIN and further strengthened its relations with NOFIA and other northern agricultural research stations by submitting a LOI for a Pan Northern research project on sunflower (New Crop for Northern Ontario: Sunflower Yield and Management Trial). LUARS enjoyed good relations with RAIN and completed a three years project on 'Alternate Forage Legumes' jointly with RAIN and also got funding approval from CAP for a research project on Alfalfa row spacing and S in collaboration with RAIN/and other northern research stations.

LUARS was able to get seeds for all its experimental plots free of cost because of its good relations with the seed companies and the Plant Breeders in the universities and the AAFC (see also Acknowledgement!). Continued good relations with the industry led to ~\$33,500.00 contribution this year from 4 organizations (GFO, Richardson International, Canada Malting Company, NWO Innovation Centre and Timac Agro). Thunder Bay Co-op not only donated \$1,000.00 to LUARS but also agreed to store our pesticides over winter free of charge! Good relations with FedNor Thunder Bay helped get funding for a Research and Extension Intern at LUARS.

LUARS Annual Reports are highly appreciated by all researchers in North America/and by our colleagues in OMAFRA and OSCIA at 1 Stone Road Guelph and elsewhere! Sharing of LUARS Annual Reports is one of the excellent means for extension and outreach by LUARS. Often people are surprised to see so much output with so little manpower (see comments from a colleague in OMAFRA in the TBARS Annual Report 2016 and comments by Dr. Glenn Coulter, Calgary in TBARS Annual Report 2015).

7.6 Training of Students/Interns:

- Dr. Sahota was/is a co-guide or member of the advisory committee for some Lakehead University (LU) PhD (PaulGonzalo BenalcazarVergara from Ecuador) and MSc students (Anmol Rana and Jannat Chauhan) all from the Faculty of Natural Resources Management.
- Dr. Sahota and Blaine Tomeck trained an Intern Dillon Brian Muldoon and the following MSc Students/Part Time Help Workers from LU in small plot field plot research:
 - Anmol Rana who also did her Master's Research at LUARS
 - Karan Karan
 - Parneet Kaur, and
 - Shyam Bechra

7.7 Media Attention/Coverage:

LUARS, because of its excellent ongoing research and extension activities continued to attract media attention during 2020 as well. The media personnel came to LUARS at a short notice. See media news reports in Section 7.2.4.

The media has always helped the research station to spread the good work done by it not only among the farming community, but also to the consumers and the general public at large. As a result, research station has always had a strong public support for continuity of its development oriented and economically rewarding research and extension activities! 8. Contact Information of Seed Companies

Varieties	Companies/Suppliers	Contact information
Spring Wheat		
SY Obsidian, SY TORACH	Syngenta Canada Inc.	Box 104, Oakville, MB, Canada R0H 0Y0 Tel: (204) 871- 5774
	FP Genetics Inc.	426 McDonald Street Regina, SK S4N 6E1 Tel: (877) 791-
AAC Viewfield, AAC Russell VB, CDC Reign		1045, Fax: (877) 791-1046
Raven, Easton	C&M Seeds	6180 5th Line, Palmerston, ON, Canada N0G 2P0 Tel: (519) 343-2126, Email: esparry@redwheat.com
AAC Crossfield, AAC Connery, AAC W1876,	Canterra Seeds	1475 Chebrier Blvd R&PD Suite 201, Winnipeg, MB,
CS Jake, CS Accelerate, CS Tracker, CDC		Canada R3T 1Y7. Tel: (204) 988-9760, Email:
Credence		info@canterra.com
AAC Penhold, Minnedosa, AAC Tisdale, AAC	SeCan Association	400 – 300 Terry Fox Drive Kanata, ON Canada K2K 0E3
Goodwin, AAC Starbuck, AAC Wheatland		Tel: (613) 592-8600, Fax: (613) 592-9497, Email:
VB, AAC Alida, AAC Brandon, AAC Redstar		seed@secan.com
AAC Warman VB	SeCan Association	SeCan, Box 30, Elstow,SK S0K 1M0, Canada
Dakosta	Elite Seeds (La Coop Fédérée)	19235 Avenue St-Louis Saint-Hyacinthe, QC Canada J2T
		5J4 Tel: (450) 799-2326, Fax: (450) 773-3381, Email:
		Christian.Azar@sollio.ag Website: www.lacoop.coop
Prosper	Seed Depot Corp.	Box 208 Pilot Mound, MB Canada R0G 1P0. Tel: (204)
		825-2000, Fax: (204) 825-2758
AAC Prevail VB	Alliance Seed Corporation	24th Floor, 333 Main Street, Winnipeg, Manitoba R3C
		4E2. Tel: 1-877-270-2890, Email:
		info@allianceseed.com

8. Contact Information of Seed Companies/Suppliers

Varieties	Companies/Suppliers	Contact information
Winter Wheat		
Gallus, JDC 78, Keldin	C & M Seeds	RR#3 6180 Line Minto 5 Palmerston, ON Canada N0G
		2P0 Tel: (519) 343-2126, Fax: (519) 343-3792, Email:
AAC Goldrush, AAC Icefield	FP Genetics Inc.	426 McDonald Street Regina, SK S4N 6E1 Tel: (877) 791-
CDC Falcon, Moats	SeCan Association	400 – 300 Terry Fox Drive Kanata, ON Canada K2K 0E3
		Tel: (613) 592-8600, Fax: (613) 592-9497, Email:
		seed@secan.com
AAC Gateway	Seed Depot Corp.	Box 208 Pilot Mound, MB Canada R0G 1P0 Tel: (204)
AAC Elevate, AAC Wildfire	Stamp Seeds	9 Center Street Box 3030 Enchant, AB Canada T0K0V0
		Tel: (403) 739-2233, Fax: (403) 739-2167, Email:
CDC Buteo	Trawin Seeds	Box 267 Melfort, SK Canada S0E 1A0 Tel: (306) 752-
Spring Oat	-	
CDC Arborg	FP Genetics Inc.	426 McDonald Street Regina, SK S4N 6E1 Tel: (877) 791-
Akina	Elite Seeds (La Coop Fédérée)	19235 Avenue St-Louis Saint-Hyacinthe, QC Canada J2T
		5J4 Tel: (450) 799-2326, Fax: (450) 773-3381, Email:
		Christian.Azar@sollio.ag, Website: www.lacoop.coop
AAC Bullet, AAC Roskens, AC Rigodon, Ore	SeCan Association	400 – 300 Terry Fox Drive Kanata, ON Canada K2K 0E3
3541M, Ore 3542M, CDC Skye, AAC Douglas		Tel: (613) 592-8600, Fax: (613) 592-9497, Email:
		seed@secan.com
AAC Noranda	Semican Atlantic Inc.	366 Rang 10 Plessisville, QC Canada G6L 2Y2
Vitality	Synagri	5175 boulevard Laurier East Saint-Hyacinthe, QC Canada
		J2R 2B4 Tel: (450)799-3225, Fax: (450) 799-3229, Email:

Varieties	Companies/Suppliers	Contact information
Malting Barley		
AAC Synergy, AC Newdale, Bentley	Semican Inc.	366 10e Rang Plessisville, QC, Canada G6L 2Y2. Tel: (819) 362-8823, Fax: (819) 362-3385
AAC Connect	Semician Recherche	1290 116 RTE O Princeville, QC, Canada G6L 4K7. Tel: (819) 364-2001
CDC Fraser, CDC Copeland, CDC Kindersley, CDC Bow	SeCan Association	192038 GD TWP Rd. 572, Lamont, AB, Canada T0B 2R0. Tel: (780) 887-3639, Email: seed@secan.com
OAC 21	Cribit Seeds	265 Katherine St. S, West Montrose, ON, Canada N0B 2V0. Tel: (519) 664-3701, Email: seeds@cribit.com
Lowe, AB Brewnet	Alberta Agriculture and Forestry	Field Crop Development Centre 5030 - 50'th Street Lacombe, AB Canada T4L 1W8, Tel: (403) 782-4641
AAC Goldman	Elite Seeds (La Coop Fédérée)	19235 Avenue St-Louis Saint-Hyacinthe, QC Canada J2T 5J4 Tel: (450) 799-2326, Fax: (450) 773-3381, Email: Christian.Azar@sollio.ag, Website: www.lacoop.coop
Two-Row Spring/Malting Barley		
AB Tofield, AB Wrangler, TR18647	AAFC Lacombe	6000C AND E TRAIL, Lacombe, AB T4L 1V7, Tel: (403) 782-8100
AAC Ling and AAC Bell	AAFC Ottawa	960 Carling Ave, Central Experimental Farm, Ottawa, ON K1A 0C6, Tel: (613) 759-1307, Email: raja.khanal@canada.ca
CDC Bow, CDC Churchill	SeCan Association	192038 GD TWP Rd. 572, Lamont, AB, Canada T0B 2R0 Tel: (780) 887-3639, Email: seed@secan.com
AAC Goldrush	Elite Seeds (La Coop Fédérée)	19235 Avenue St-Louis Saint-Hyacinthe, QC Canada J2T 5J4 Tel: (450) 799-2326, Fax: (450) 773-3381, Email: Christian.Azar@sollio.ag, Website: www.lacoop.coop

Varieties	Companies/Suppliers	Contact information
Malting Barley		
Six-Row Spring Barley		
AAC Bloomfield, Alyssa, Boroe	Elite Seeds (La Coop Fédérée)	19235 Avenue St-Louis Saint-Hyacinthe, QC Canada J2T 5J4 Tel: (450) 799-2326, Fax: (450) 773-3381, Email: Christian.Azar@sollio.ag, Website: www.lacoop.coop
Amberly	PRO Seeds	595570 Hwy 59 N PO Box 20039 Woodstock, ON Canada N4S 8X8 Tel: (519) 533-0370, Fax: (519) 533-0773, Email: info@proseeds.ca
Encore, AB Advantage	SeCan Association	400 – 300 Terry Fox Drive Kanata, ON Canada K2K 0E3 Tel: (613) 592-8600, Fax: (613) 592-9497, Email: seed@secan.com
Chambly	Semences Prograin Inc.	145 Bas-de-la-rivière Nord Saint-Césaire, QC Canada J0L 1T0 Tel: (450) 469-5744, Fax: (450) 469-4547
Oceanik, Synasolis	Synagri	5175 boulevard Laurier East Saint-Hyacinthe, QC Canada J2R 2B4 Tel: (450)799-3225, Fax: (450) 799-3229, Email: synagri@synagri.ca
AB CATTELAC	Alliance Seeds	333 Main St 22nd Floor, Winnipeg, MB R3C 4E2, Tel: 877-270-2890
Winter Rye		
Bono, Brasseto	FP Genetics Inc.	426 McDonald Street Regina, SK S4N 6E1 Tel: (877) 791- 1045, Fax: (877) 791-1046, Email: ssingh@fpgenetics.ca
Guttino	Stamp Seeds	9 Center Street Box 3030 Enchant, AB Canada T0K0V0 Tel: (403) 739-2233, Fax: (403) 739-2167, Email: Office@stampseeds.com, Website: www.stampseeds.com
Hazlet	SeCan Association	400 – 300 Terry Fox Drive Kanata, ON Canada K2K 0E3 Tel: (613) 592-8600, Fax: (613) 592-9497, Email: seed@secan.com

Varieties	Companies/Suppliers	Contact information
Perennial Rye		
Ace-1	AAFC Lethbridge	5403 1st Avenue South Lethbridge, AB Canada T1J 4B1 Tel: (403) 327-4561, Email: AAFC.LethbridgeRDC@agr.gc.ca
Canola		
L234PC, L255PC, L230, L241C, L252, L345PC, L352C, LR344PC	BASF Agricultural Solutions	Site 600, Box 117 Saskatoon, SK, Canada S7K 3J9 Tel: (306) 477-9400, Email: kent.hall@agro.basf-se.com
BY 6204TF	BrettYoung	Box 99 St Norbert Postal Stn, Winnipeg, MB R3V 1L5, Tel: (204) 478-2240, Email: Rene.Mabon@brettyoung.ca
B3010M	Brevant TM Seeds	Call (800) 667 3852; Got the seed through Richardson International - see address in Our Collaborators
CS2300	Canterra Seeds	1475 Chebrier Blvd R&PD Suite 201, Winnipeg, MB,
PV 585GC	Nutrien Ag Solutions	3735 East Quance St. Regina, SK S4V 3A4. Tel: 1 (855) 569-9444
Spring Peas		
AAC Carver, AAC Comfort	Canterra Seeds	1475 Chebrier Blvd R&PD Suite 201, Winnipeg, MB, Canada R3T 1Y7. Tel: (204) 988-9760, Email: info@canterra.com
AAC Chrome, Sorrento, AAC Profit	FP Genetics Inc.	426 McDonald Street Regina, SK S4N 6E1 Tel: (877) 791- 1045, Fax: (877) 791-1046, Email: ssingh@fpgenetics.ca
Gold Harvest	Salt Spring Seeds	P.O. Box 444 Ganges Salt Spring Island, BC Canada V8K 2W1, Tel: (250) 537-5269
CDC Forest, CDC Spruce, CDC Spectrum, CDC Canary, CDC Lewochko	SeCan Association	400 – 300 Terry Fox Drive, Kanata ON Canada K2K 0E3 Tel: (613) 592-8600, Fax: (613) 592-9497, Email: seed@secan.com

		172
Varieties	Companies/Suppliers	Contact information
Mustard		
AAC Brown 120	AAFC Saskatoon	107 Science Place Saskatoon, SK Canada S7N 0X2 Tel: (306) 385-9273
AC 200 (oriental)	Sundwall Seed	Farm, Govan, SK Canada S0G 1Z0 Tel: (306) 484-2010
AAC Adagio (yellow), AC Vulcan (oriental)	AAFC Saskatoon	107 Science Place Saskatoon, SK Canada S7N 0X2 Tel: (306) 385-9358
Flax		
Topaz	Alliance Seed Corporation	22 nd Floor, 333 Main Street Winnipeg, MB Canada R3C 4E2 Tel: (204) 272-2892, Fax: (204) 272-2893, Email: jkarlowsky@allianceseed.com
ND Hammond	North Dakota Crop Improvement & Seed Association	1360 Albrecht Blvd, Fargo, ND 58102, United States.Tel: 701-231-8067
FP2566, FP2567, FP2573, FP2589, FP2590, FP2591, FP2592, FP2593, FP2594, FP2595	FP Genetics Inc.	426 McDonald Street Regina, SK S4N 6E1 Tel: (877) 791- 1045, Fax: (877) 791-1046, Email: ssingh@fpgenetics.ca
CDC Glas, AAC Bright, CDC Rowland, AAC Prairie Sunshine, CDC Bethune, CDC Buryu	SeCan Association	400 – 300 Terry Fox Drive, Kanata ON Canada K2K 0E3 Tel: (613) 592-8600, Fax: (613) 592-9497, Email: seed@secan.com
CDC Dorado, CDC Marvelous,	Stamp Seeds	9 Center Street Box 3030 Enchant, AB Canada T0K0V0 Tel: (403) 739-2233, Fax: (403) 739-2167, Email: Office@stampseeds.com, Website: www.stampseeds.com
Lentils		
CDC Rosetown	Thompsons Limited	2 Hyland Drive, Blenheim, ON, Canada NOP 1A0. Tel: (403) 327-4561, Fax: (519) 676-3185
CDC Impulse CL, CDC Lima	SeCan Association	400 – 300 Terry Fox Drive, Kanata ON Canada K2K 0E3 Tel: (613) 592-8600, Fax: (613) 592-9497, Email: seed@secan.com

Varieties	Companies/Suppliers	Contact information
Edible Beans		
AAC Expedition	AAFC Lethbridge	5403 1st Avenue South, Lethbridge, AB, Canada T1J 4B1.
		Tel: (403) 327-4561
AAC Scotty	AAFC Morden	101 Route 100, Morden, MB, Canada R6M 1Y5. Tel:
		(204) 822-7556
AAC Argosy, AAC Nautica, AAC Shock	Hensall District Co-operative	1 Davidson Drive, P.O. Box 219, Hensall, ON, Canada
		N0M 1X0 Tel: (519) 262-3002, Fax: (519) 262, 2317
Earlired	University of Guelph, Parent	Department of Plant Agriculture Crop Science Building
	Seed Farm Ltd.	Guelph, ON Canada N1G 2W1
		Box 36 St. Joseph Manitoba, ON Canada R0G 2C0 Tel:
		(204) 737-2625, Fax: (204) 737-2248
AAC Whitehorse, AAC Whitestar, AAC Y012,	Viterra Inc.	Viterra Inc. 74041 Highway 845 Lethbridge, AB T1K
AAC Y015		8G9
		Tel: (403) 317-1746, Email: lethbridge@viterra.com

Varieties	Companies/Suppliers	Contact information
Soybeans		
S006-M4X, S0009-M2, S006-W5, S003-Z4X,	Syngenta Canada Inc.	Box 104, Oakville, MB, Canada R0H 0Y0 Tel: (204) 871-
S007-Y4		5774
LASSA R2X, Vidar R2X, Karpo R2	BrettYoung	51134 Hwy 330, Winnipeg, MB, Canada R3V 1L5. Tel:
		(240) 261-7932
NSC Redvers RR2X, NSC Sperling RR2X,	NorthStar Genetics	3493 Pembina Hwy, Winnipeg, MB R3V 1A4 Tel: (204)
NSC Newton RR2X, NSC Greenridge RR2Y,		262-2425, Email: contact@northstargenetics.com
NSC Starbuck, NSC Tilston RR2Y, NSC		
Watson RR2Y, NSC Redvers RR2X, NSC		
Culross RR2X		
Lono R2, Mani R2X, Amirani R2, Renuka	BrettYoung	Box 99 St Norbert Postal Stn, Winnipeg, MB Canada R3V
R2X, Akras		1L5 Tel: (800) 665-5015
PekkoR2, PodagoR2	Elite Seeds (La Coop Fédérée)	19235 Avenue St-Louis Saint-Hyacinthe, QC Canada J2T
		5J4 Tel: (450) 799-2326, Fax: (450) 773-3381 Website:
		www.lacoop.coop
Bourke R2X, Mahony R2,	SeCan Association	400 – 300 Terry Fox Drive, Kanata ON Canada K2K 0E3
		Tel: (613) 592-8600, Fax: (613) 592-9497, Email:
		seed@secan.com
	Nutrien Ag Solutions	3735 East Quance St. Regina, SK S4V 3A4. Tel: 1 (855)
PV16 S004 RR2X, PV15 S0009 RR2X		569-9444

Note: For older varieties, see past LUARS Annual Reports or visit www.GoForages.ca or visit www.inspection.gc.ca/plants/variety-registration/eng/1299175847046/1299175906353

9. Acknowledgements by the Research Team

9. Acknowledgements by the Research Team

On behalf of Blaine Tomeck, Dillon Brian Muldoon and myself, I would like to take this opportunity to thank all our collaborators and:

- 1. Dr. Andrew Dean Vice President Research and Innovation for his support for smooth functioning of LUARS; which wouldn't be possible without funding in part by OMAFRA through an agreement with the ARIO.
- 2. Members of TBARA Thunder Bay for putting faith in the Research Team at LUARS.
- 3. FedNor for funding Research and Extension Intern position at LUARS
- 4. A & L Lab, Canada Malting Company and all others for their in kind contributions.
- 5. All farmers who spared time for me to visit their fields alone/or with others and for sharing information on farm operations, crop varieties/practices and yields.
- 6. All organizations that funded research projects/trials at LUARS; see Our Collaborators.
- 7. All visitors to LUARS from within and outside Thunder Bay who showed interest in our work.
- 8. Andrew Brekveld for providing alfalfa seed free of cost and for dropping lentil harvest samples at LUARS.
- 9. Henry Aalbers for contributing corn seed free of cost.
- 10. Gert Brekveld for on farm cultivation of lentils.
- 11. Karen Maa and Margot Ross for sending invoices to our collaborators and Human Resources LU for staff payments on time.
- 12. Chronicle Journal Thunder Bay, Thunder Bay TV, Ontario Farmer, Northwest Link and TBFA for coverage of LUARS research and development activities.
- 13. Physical Plant LU for opening and winterizing LUARS and for some repairs at LUARS.
- 14. NOFIA and RAIN for working on joint research proposals on malting barley and Galega/Alternate Forages.
- 15. Thunder Bay Co-op for donating \$1,000.00 for research at LUARS.
- 16. Dr. Ulf Runesson for sparing 2 MSc students to complete part of their Summer Intern Term at LUARS this year and the students (Karan Karan and Parneet Kaur).
- 17. Anmol Rana and Shyam Bechra for working as Part Time Help at LUARS from September to November, 2020; without whom it wouldn't be possible to complete the Annual Report.
- 18. Various seed suppliers for supply of cost free seeds; as listed in Contact Information of Seed Companies/Suppliers part of this report. Trent Whiting (SeCan), Ellen Sparry (C&M Seeds), Natalie Campbel (BASF), Marc Brown (Syngenta), Surjit Bawa (Canterra Seeds), Jodee Karlowsky (Alliance Seeds), Cynthia Deitz (Nutrien) and some AAFC and Field Crop Development Centre Lacombe Scientists (Raja Khanal, Robert Graf and Patricia Juskiw) deserve special mention.
- 19. And, above all to the Omnipresent/Omnipotent Lord who helped us to successfully complete another year of Development Oriented Research. I bow to you 'O Lord!

I would like to place on record my appreciation for Blaine Tomeck for his consistent hard/and dedicated work and Dillon Brian Muldoon for his hard work and dedication.

10. Abbreviations used in Annual Report

10. Abbreviations used in the LUARS Annual Report 2020

AAFC: Agriculture and Agri-Food Canada ASA: American Society of Agronomy ARIO: Agricultural Research Institute of Ontario CAP: Canadian Agricultural Partnership CCA: Certified Crop Advisor **CEC:** Cation Exchange Capacity CHU: Corn/Cumulative Heat Units CSA: Canadian Society of Agronomy EDI: The Economic Development and Innovation office, LU ESN: Environmentally Smart Nitrogen (Brand name for polymer coated urea) FHB: Fusarium Head Blight GDD: Growing Degree Days GFO: Grain Farmers of Ontario LOI: Letter of Intent LU: Lakehead University LUARS: Lakehead University Agricultural Research Station MOU: Memorandum of Understanding MT: Metric Tonne NFRF: New Frontiers in Research Fund NRM: Natural Resources Management NOFIA: Northern Ontario Farm Innovation Alliance NWO: Northwestern Ontario OMAFRA: Ontario Ministry of Agriculture, Food and Rural Affairs OSCIA: Ontario Soil and Crop Improvement Association **RAIN: Rural Agri-Innovation Network** TBARA: Thunder Bay Agricultural Research Association **TBARS:** Thunder Bay Agricultural Research Station **TBDHU: Thunder Bay District Health Unit** TBFA: Thunder Bay Federation of Agriculture TBSCIA: Thunder Bay Soil and Crop Improvement Association TbTv: Thunder Bay Television **TSC: Technology Services Centre**

L to R: Two LU MSc Students/Part Time Workers — Anmol Rana and Shyam Hasmukh Bechra and Dillon Brian Muldoon Intern LUARS; without whom it would not be possible to complete LUARS Annual Report 2020!

